Matches in SemOpenAlex for { <https://semopenalex.org/work/W2796629918> ?p ?o ?g. }
- W2796629918 endingPage "4405" @default.
- W2796629918 startingPage "4391" @default.
- W2796629918 abstract "Anomaly detection has been known to be a challenging problem due to the uncertainty of anomaly and the interference of noise. In this paper, we focus on anomaly detection in hyperspectral images (HSIs) and propose a novel detection algorithm based on spectral unmixing and dictionary-based low-rank decomposition. The innovation is threefold. First, due to the highly mixed nature of pixels in HSI data, instead of using the raw pixel directly for anomaly detection, the proposed algorithm applies spectral unmixing to obtain the abundance vectors and uses these vectors for anomaly detection. We show that the abundance vectors possess more distinctive features to identify anomaly from background. Second, to better represent the highly correlated background and the sparse anomaly, we construct a dictionary based on the mean shift clustering of the abundance vectors to improve both the discriminative and representative powers of the algorithm. Finally, a low-rank matrix decomposition method based on the constructed dictionary is proposed to encourage the coefficients of the dictionary, instead of the background itself, to be low rank, and the residual matrix to be sparse. Anomalies can then be extracted by summing up the columns of the residual matrix. The proposed algorithm is evaluated on both synthetic and real data sets. Experimental results show that the proposed approach constantly achieves high detection rate, while maintaining low false alarm rate regardless of the type of images tested." @default.
- W2796629918 created "2018-04-24" @default.
- W2796629918 creator A5044125685 @default.
- W2796629918 creator A5046597133 @default.
- W2796629918 creator A5082228369 @default.
- W2796629918 creator A5083651030 @default.
- W2796629918 creator A5088784476 @default.
- W2796629918 creator A5089388395 @default.
- W2796629918 date "2018-08-01" @default.
- W2796629918 modified "2023-10-17" @default.
- W2796629918 title "Hyperspectral Anomaly Detection Through Spectral Unmixing and Dictionary-Based Low-Rank Decomposition" @default.
- W2796629918 cites W1902027874 @default.
- W2796629918 cites W1964409388 @default.
- W2796629918 cites W1965340435 @default.
- W2796629918 cites W1970099214 @default.
- W2796629918 cites W1977556410 @default.
- W2796629918 cites W1997565609 @default.
- W2796629918 cites W2002189870 @default.
- W2796629918 cites W2004491663 @default.
- W2796629918 cites W2010702969 @default.
- W2796629918 cites W2024288510 @default.
- W2796629918 cites W2027878671 @default.
- W2796629918 cites W2029786966 @default.
- W2796629918 cites W2037034832 @default.
- W2796629918 cites W2047870694 @default.
- W2796629918 cites W2067191022 @default.
- W2796629918 cites W2067782748 @default.
- W2796629918 cites W2069231830 @default.
- W2796629918 cites W2070424424 @default.
- W2796629918 cites W2078183677 @default.
- W2796629918 cites W2084252873 @default.
- W2796629918 cites W2084716923 @default.
- W2796629918 cites W2086506050 @default.
- W2796629918 cites W2087263574 @default.
- W2796629918 cites W2088429922 @default.
- W2796629918 cites W2097381359 @default.
- W2796629918 cites W2101837437 @default.
- W2796629918 cites W2116793806 @default.
- W2796629918 cites W2140340527 @default.
- W2796629918 cites W2145962650 @default.
- W2796629918 cites W2147042314 @default.
- W2796629918 cites W2149936180 @default.
- W2796629918 cites W2156005575 @default.
- W2796629918 cites W2160547390 @default.
- W2796629918 cites W2160558851 @default.
- W2796629918 cites W2163886442 @default.
- W2796629918 cites W2163957348 @default.
- W2796629918 cites W2164500538 @default.
- W2796629918 cites W2165289391 @default.
- W2796629918 cites W2281153166 @default.
- W2796629918 cites W2288752886 @default.
- W2796629918 cites W2292987679 @default.
- W2796629918 cites W2295576075 @default.
- W2796629918 cites W2497075055 @default.
- W2796629918 cites W2736842229 @default.
- W2796629918 cites W2748015792 @default.
- W2796629918 cites W2765455392 @default.
- W2796629918 cites W3101195009 @default.
- W2796629918 cites W4233367343 @default.
- W2796629918 doi "https://doi.org/10.1109/tgrs.2018.2818159" @default.
- W2796629918 hasPublicationYear "2018" @default.
- W2796629918 type Work @default.
- W2796629918 sameAs 2796629918 @default.
- W2796629918 citedByCount "136" @default.
- W2796629918 countsByYear W27966299182018 @default.
- W2796629918 countsByYear W27966299182019 @default.
- W2796629918 countsByYear W27966299182020 @default.
- W2796629918 countsByYear W27966299182021 @default.
- W2796629918 countsByYear W27966299182022 @default.
- W2796629918 countsByYear W27966299182023 @default.
- W2796629918 crossrefType "journal-article" @default.
- W2796629918 hasAuthorship W2796629918A5044125685 @default.
- W2796629918 hasAuthorship W2796629918A5046597133 @default.
- W2796629918 hasAuthorship W2796629918A5082228369 @default.
- W2796629918 hasAuthorship W2796629918A5083651030 @default.
- W2796629918 hasAuthorship W2796629918A5088784476 @default.
- W2796629918 hasAuthorship W2796629918A5089388395 @default.
- W2796629918 hasConcept C11413529 @default.
- W2796629918 hasConcept C114614502 @default.
- W2796629918 hasConcept C121332964 @default.
- W2796629918 hasConcept C12997251 @default.
- W2796629918 hasConcept C153180895 @default.
- W2796629918 hasConcept C154945302 @default.
- W2796629918 hasConcept C155512373 @default.
- W2796629918 hasConcept C158693339 @default.
- W2796629918 hasConcept C159078339 @default.
- W2796629918 hasConcept C160633673 @default.
- W2796629918 hasConcept C163716315 @default.
- W2796629918 hasConcept C164226766 @default.
- W2796629918 hasConcept C26873012 @default.
- W2796629918 hasConcept C33923547 @default.
- W2796629918 hasConcept C41008148 @default.
- W2796629918 hasConcept C42355184 @default.
- W2796629918 hasConcept C56372850 @default.
- W2796629918 hasConcept C58237817 @default.
- W2796629918 hasConcept C62520636 @default.
- W2796629918 hasConcept C73555534 @default.
- W2796629918 hasConcept C739882 @default.