Matches in SemOpenAlex for { <https://semopenalex.org/work/W2796728023> ?p ?o ?g. }
- W2796728023 endingPage "298" @default.
- W2796728023 startingPage "290" @default.
- W2796728023 abstract "Flow through open channels can contain solids. The deposition of solids occasionally occurs due to insufficient flow velocity to transfer the solid particles, causing many problems with transfer systems. Therefore, a method to determine the limiting velocity (i.e. Fr) is required. In this paper, three alternative, hybrid evolutionary algorithm methods, including differential evolution (DE), genetic algorithm (GA) and particle swarm optimization (PSO) based on the adaptive network-based fuzzy inference system are presented: ANFIS-GA, ANFIS-DE and ANFIS-PSO. In these methods, evolutionary algorithms optimize the membership functions, and ANFIS adjusts the premises and consequent parameters to optimize prediction performance. The performance of the proposed methods is compared with that of the general ANFIS using three different datasets comprising a wide range of data. The results show that the hybrid models (ANFIS-GA, ANFIS-DE and ANFIS-PSO) are more accurate than general ANFIS in training with a hybrid algorithm (hybrid of back propagation and least squares). Among the evolutionary algorithms, ANFIS-PSO performed the best (R2=0.976, RMSE=0.26, MARE=0.057, BIAS=-0.004 and SI=0.059)." @default.
- W2796728023 created "2018-04-24" @default.
- W2796728023 creator A5012596219 @default.
- W2796728023 creator A5037410206 @default.
- W2796728023 creator A5066692423 @default.
- W2796728023 date "2017-06-01" @default.
- W2796728023 modified "2023-10-01" @default.
- W2796728023 title "Optimizing ANFIS for sediment transport in open channels using different evolutionary algorithms" @default.
- W2796728023 cites W1577668191 @default.
- W2796728023 cites W1595159159 @default.
- W2796728023 cites W1894638867 @default.
- W2796728023 cites W1969848370 @default.
- W2796728023 cites W1973755820 @default.
- W2796728023 cites W1974138876 @default.
- W2796728023 cites W1976963256 @default.
- W2796728023 cites W1981329516 @default.
- W2796728023 cites W1985009583 @default.
- W2796728023 cites W1992332357 @default.
- W2796728023 cites W2004327769 @default.
- W2796728023 cites W2008254025 @default.
- W2796728023 cites W2015920770 @default.
- W2796728023 cites W2018033513 @default.
- W2796728023 cites W2021461169 @default.
- W2796728023 cites W2024442140 @default.
- W2796728023 cites W2025404282 @default.
- W2796728023 cites W2052963662 @default.
- W2796728023 cites W2057309892 @default.
- W2796728023 cites W2061316809 @default.
- W2796728023 cites W2073007124 @default.
- W2796728023 cites W2076669121 @default.
- W2796728023 cites W2077913352 @default.
- W2796728023 cites W2077967845 @default.
- W2796728023 cites W2078319647 @default.
- W2796728023 cites W2078840582 @default.
- W2796728023 cites W2079325629 @default.
- W2796728023 cites W2080120484 @default.
- W2796728023 cites W2097571405 @default.
- W2796728023 cites W2105080752 @default.
- W2796728023 cites W2108388069 @default.
- W2796728023 cites W2109364787 @default.
- W2796728023 cites W2138306900 @default.
- W2796728023 cites W2139339670 @default.
- W2796728023 cites W2141249818 @default.
- W2796728023 cites W2162087406 @default.
- W2796728023 cites W2168747298 @default.
- W2796728023 cites W2224932770 @default.
- W2796728023 cites W2489335159 @default.
- W2796728023 cites W2498255157 @default.
- W2796728023 cites W2508474535 @default.
- W2796728023 cites W2587803307 @default.
- W2796728023 cites W2904250082 @default.
- W2796728023 cites W805180445 @default.
- W2796728023 doi "https://doi.org/10.22126/arww.2017.773" @default.
- W2796728023 hasPublicationYear "2017" @default.
- W2796728023 type Work @default.
- W2796728023 sameAs 2796728023 @default.
- W2796728023 citedByCount "4" @default.
- W2796728023 countsByYear W27967280232018 @default.
- W2796728023 countsByYear W27967280232020 @default.
- W2796728023 countsByYear W27967280232021 @default.
- W2796728023 crossrefType "journal-article" @default.
- W2796728023 hasAuthorship W2796728023A5012596219 @default.
- W2796728023 hasAuthorship W2796728023A5037410206 @default.
- W2796728023 hasAuthorship W2796728023A5066692423 @default.
- W2796728023 hasConcept C105795698 @default.
- W2796728023 hasConcept C11413529 @default.
- W2796728023 hasConcept C119857082 @default.
- W2796728023 hasConcept C126255220 @default.
- W2796728023 hasConcept C127413603 @default.
- W2796728023 hasConcept C139945424 @default.
- W2796728023 hasConcept C146978453 @default.
- W2796728023 hasConcept C154945302 @default.
- W2796728023 hasConcept C159149176 @default.
- W2796728023 hasConcept C176783269 @default.
- W2796728023 hasConcept C186108316 @default.
- W2796728023 hasConcept C195975749 @default.
- W2796728023 hasConcept C204323151 @default.
- W2796728023 hasConcept C33923547 @default.
- W2796728023 hasConcept C41008148 @default.
- W2796728023 hasConcept C44616089 @default.
- W2796728023 hasConcept C49937458 @default.
- W2796728023 hasConcept C58166 @default.
- W2796728023 hasConcept C62469222 @default.
- W2796728023 hasConcept C74750220 @default.
- W2796728023 hasConcept C85617194 @default.
- W2796728023 hasConcept C8880873 @default.
- W2796728023 hasConceptScore W2796728023C105795698 @default.
- W2796728023 hasConceptScore W2796728023C11413529 @default.
- W2796728023 hasConceptScore W2796728023C119857082 @default.
- W2796728023 hasConceptScore W2796728023C126255220 @default.
- W2796728023 hasConceptScore W2796728023C127413603 @default.
- W2796728023 hasConceptScore W2796728023C139945424 @default.
- W2796728023 hasConceptScore W2796728023C146978453 @default.
- W2796728023 hasConceptScore W2796728023C154945302 @default.
- W2796728023 hasConceptScore W2796728023C159149176 @default.
- W2796728023 hasConceptScore W2796728023C176783269 @default.
- W2796728023 hasConceptScore W2796728023C186108316 @default.
- W2796728023 hasConceptScore W2796728023C195975749 @default.