Matches in SemOpenAlex for { <https://semopenalex.org/work/W2796766530> ?p ?o ?g. }
- W2796766530 endingPage "20" @default.
- W2796766530 startingPage "1" @default.
- W2796766530 abstract "Ferromagnetic Shape Memory Alloys (FSMAs) exhibit large strains by the magnetic-field-induced martensite reorientation. But, due to the high-frequency field-induced cyclic frictional martensite twin boundary motion in FSMAs, the dissipation heat can cause a large temperature rise. Thus, the output strain amplitude of FSMAs would decrease significantly if the temperature increases to be high enough to trigger the Martensite-Austenite phase transformation. Such thermal effects on the dynamic responses of FSMAs are unclear in literature because most existing dynamic experiments were performed only for a short-time period (a few seconds) to avoid the temperature rise. In this paper, systematic long-time experiments (>100 s) on a Ni-Mn-Ga single crystal are conducted at various levels of magnetic field frequency, initial compressive stress and ambient airflow velocity. It is found that, during the long-time actuation, the specimen temperature increases and then saturates at a certain level (stable temperature) while the strain oscillation evolves to a stable cycle; both the stable temperature and the stable strain amplitude depend on the frequency, the stress level and the heat exchange condition (i.e., ambient airflow velocity). Particularly, when the specimen temperature reaches a critical level to partially transform the martensite to the austenite, the output strain amplitude reduces suddenly because of less martensite reorientation. Changing the ambient heat-exchange condition (by the airflow) can modify the specimen temperature evolution to avoid the phase transformation, but it also changes the behaviors of the martensite reorientation that is sensitive to temperature. Eventually, the output strain amplitude depends on the airflow velocity non-monotonically, i.e., there exists a critical heat exchange condition to achieve the maximum stable strain amplitude. Based on the systematic experiments and a simplified one-dimensional heat-transfer model, the critical condition can be determined. The new experimental phenomena of the thermal effects can be well understood and described by the heat-transfer model. Further, instead of avoiding the temperature rise and the phase transformation, we propose to take advantage of the interaction between the temperature-induced phase transformation and the magnetic-field-induced martensite reorientation to develop a special “isothermal” FSMA actuator with a tunable output strain amplitude and a constant working temperature. This paper provides systematic experimental data and theoretical analysis for understanding the thermo-magneto-mechanical coupling in FSMAs and developing reliable high-frequency long-time running FSMA-actuators." @default.
- W2796766530 created "2018-04-24" @default.
- W2796766530 creator A5001653122 @default.
- W2796766530 creator A5004493978 @default.
- W2796766530 creator A5052102973 @default.
- W2796766530 creator A5065858574 @default.
- W2796766530 date "2018-09-01" @default.
- W2796766530 modified "2023-10-16" @default.
- W2796766530 title "Thermal effects on high-frequency magnetic-field-induced martensite reorientation in ferromagnetic shape memory alloys: An experimental and theoretical investigation" @default.
- W2796766530 cites W1040134036 @default.
- W2796766530 cites W1469839728 @default.
- W2796766530 cites W1964756569 @default.
- W2796766530 cites W1967431316 @default.
- W2796766530 cites W1969328920 @default.
- W2796766530 cites W1970056219 @default.
- W2796766530 cites W1971970110 @default.
- W2796766530 cites W1974440884 @default.
- W2796766530 cites W1976737865 @default.
- W2796766530 cites W1981305047 @default.
- W2796766530 cites W1982652038 @default.
- W2796766530 cites W1988342098 @default.
- W2796766530 cites W1990218314 @default.
- W2796766530 cites W1991925266 @default.
- W2796766530 cites W1996250967 @default.
- W2796766530 cites W1996253938 @default.
- W2796766530 cites W1996534207 @default.
- W2796766530 cites W2000033175 @default.
- W2796766530 cites W2008805894 @default.
- W2796766530 cites W2009174058 @default.
- W2796766530 cites W2014058955 @default.
- W2796766530 cites W2014343184 @default.
- W2796766530 cites W2014373364 @default.
- W2796766530 cites W2025005306 @default.
- W2796766530 cites W2025145079 @default.
- W2796766530 cites W2025516788 @default.
- W2796766530 cites W2031587088 @default.
- W2796766530 cites W2033253069 @default.
- W2796766530 cites W2039375814 @default.
- W2796766530 cites W2050548987 @default.
- W2796766530 cites W2051016148 @default.
- W2796766530 cites W2054325698 @default.
- W2796766530 cites W2054535197 @default.
- W2796766530 cites W2057764991 @default.
- W2796766530 cites W2057784574 @default.
- W2796766530 cites W2060900626 @default.
- W2796766530 cites W2062479816 @default.
- W2796766530 cites W2069564152 @default.
- W2796766530 cites W2078348317 @default.
- W2796766530 cites W2079340385 @default.
- W2796766530 cites W2082285653 @default.
- W2796766530 cites W2083592541 @default.
- W2796766530 cites W2084965648 @default.
- W2796766530 cites W2085140544 @default.
- W2796766530 cites W2088354564 @default.
- W2796766530 cites W2092738769 @default.
- W2796766530 cites W2116062006 @default.
- W2796766530 cites W2118801689 @default.
- W2796766530 cites W2125204104 @default.
- W2796766530 cites W2134739717 @default.
- W2796766530 cites W2143250053 @default.
- W2796766530 cites W2150485224 @default.
- W2796766530 cites W2154150917 @default.
- W2796766530 cites W2168623527 @default.
- W2796766530 cites W2336431616 @default.
- W2796766530 cites W2380608450 @default.
- W2796766530 cites W2415258849 @default.
- W2796766530 cites W2487221923 @default.
- W2796766530 cites W2488993126 @default.
- W2796766530 cites W2534813170 @default.
- W2796766530 cites W2557970113 @default.
- W2796766530 cites W2571147802 @default.
- W2796766530 cites W2601714197 @default.
- W2796766530 cites W2616383393 @default.
- W2796766530 cites W2622863357 @default.
- W2796766530 cites W2736753415 @default.
- W2796766530 cites W2739368371 @default.
- W2796766530 cites W2751632055 @default.
- W2796766530 cites W2758460432 @default.
- W2796766530 cites W2765217562 @default.
- W2796766530 cites W2779430869 @default.
- W2796766530 cites W2789633331 @default.
- W2796766530 cites W3101434993 @default.
- W2796766530 doi "https://doi.org/10.1016/j.ijplas.2018.04.008" @default.
- W2796766530 hasPublicationYear "2018" @default.
- W2796766530 type Work @default.
- W2796766530 sameAs 2796766530 @default.
- W2796766530 citedByCount "26" @default.
- W2796766530 countsByYear W27967665302018 @default.
- W2796766530 countsByYear W27967665302019 @default.
- W2796766530 countsByYear W27967665302020 @default.
- W2796766530 countsByYear W27967665302021 @default.
- W2796766530 countsByYear W27967665302022 @default.
- W2796766530 countsByYear W27967665302023 @default.
- W2796766530 crossrefType "journal-article" @default.
- W2796766530 hasAuthorship W2796766530A5001653122 @default.
- W2796766530 hasAuthorship W2796766530A5004493978 @default.
- W2796766530 hasAuthorship W2796766530A5052102973 @default.
- W2796766530 hasAuthorship W2796766530A5065858574 @default.