Matches in SemOpenAlex for { <https://semopenalex.org/work/W2796968804> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2796968804 endingPage "196" @default.
- W2796968804 startingPage "183" @default.
- W2796968804 abstract "Abstract During millions of years, nature has developed patterns and processes with interesting characteristics. They have been used as inspiration for a significant number of innovative models that can be extended to solve complex engineering and mathematical problems. One of the most famous patterns present in nature is the Golden Section (GS). It defines an especial proportion that allows the adequate formation, selection, partition, and replication in several natural phenomena. On the other hand, Evolutionary algorithms (EAs) are stochastic optimization methods based on the model of natural evolution. One important process in these schemes is the operation of selection which exerts a strong influence on the performance of their search strategy. Different selection methods have been reported in the literature. However, all of them present an unsatisfactory performance as a consequence of the deficient relations between elitism and diversity of their selection procedures. In this paper, a new selection method for evolutionary computation algorithms is introduced. In the proposed approach, the population is segmented into several groups. Each group involves a certain number of individuals and a probability to be selected, which are determined according to the GS proportion. Therefore, the individuals are divided into categories where each group contains individual with similar quality regarding their fitness values. Since the possibility to choose an element inside the group is the same, the probability of selecting an individual depends exclusively on the group from which it belongs. Under these conditions, the proposed approach defines a better balance between elitism and diversity of the selection strategy. Numerical simulations show that the proposed method achieves the best performance over other selection algorithms, in terms of its solution quality and convergence speed." @default.
- W2796968804 created "2018-04-24" @default.
- W2796968804 creator A5000506517 @default.
- W2796968804 creator A5003319227 @default.
- W2796968804 creator A5019918819 @default.
- W2796968804 creator A5034988029 @default.
- W2796968804 date "2018-09-01" @default.
- W2796968804 modified "2023-10-18" @default.
- W2796968804 title "A selection method for evolutionary algorithms based on the Golden Section" @default.
- W2796968804 cites W1179686678 @default.
- W2796968804 cites W1549119093 @default.
- W2796968804 cites W1966891773 @default.
- W2796968804 cites W1969735512 @default.
- W2796968804 cites W1972372613 @default.
- W2796968804 cites W1974716204 @default.
- W2796968804 cites W1985300565 @default.
- W2796968804 cites W200023912 @default.
- W2796968804 cites W2001471353 @default.
- W2796968804 cites W2012030883 @default.
- W2796968804 cites W2023840248 @default.
- W2796968804 cites W2027945080 @default.
- W2796968804 cites W2034969614 @default.
- W2796968804 cites W2065593776 @default.
- W2796968804 cites W2071806120 @default.
- W2796968804 cites W2073807441 @default.
- W2796968804 cites W2086886838 @default.
- W2796968804 cites W2103321050 @default.
- W2796968804 cites W2124548165 @default.
- W2796968804 cites W2140339358 @default.
- W2796968804 cites W2144487372 @default.
- W2796968804 cites W2150237223 @default.
- W2796968804 cites W2760564987 @default.
- W2796968804 cites W2782454951 @default.
- W2796968804 doi "https://doi.org/10.1016/j.eswa.2018.03.064" @default.
- W2796968804 hasPublicationYear "2018" @default.
- W2796968804 type Work @default.
- W2796968804 sameAs 2796968804 @default.
- W2796968804 citedByCount "17" @default.
- W2796968804 countsByYear W27969688042018 @default.
- W2796968804 countsByYear W27969688042019 @default.
- W2796968804 countsByYear W27969688042020 @default.
- W2796968804 countsByYear W27969688042021 @default.
- W2796968804 countsByYear W27969688042022 @default.
- W2796968804 countsByYear W27969688042023 @default.
- W2796968804 crossrefType "journal-article" @default.
- W2796968804 hasAuthorship W2796968804A5000506517 @default.
- W2796968804 hasAuthorship W2796968804A5003319227 @default.
- W2796968804 hasAuthorship W2796968804A5019918819 @default.
- W2796968804 hasAuthorship W2796968804A5034988029 @default.
- W2796968804 hasConcept C111919701 @default.
- W2796968804 hasConcept C11413529 @default.
- W2796968804 hasConcept C119857082 @default.
- W2796968804 hasConcept C154945302 @default.
- W2796968804 hasConcept C159149176 @default.
- W2796968804 hasConcept C2780129039 @default.
- W2796968804 hasConcept C41008148 @default.
- W2796968804 hasConcept C81917197 @default.
- W2796968804 hasConceptScore W2796968804C111919701 @default.
- W2796968804 hasConceptScore W2796968804C11413529 @default.
- W2796968804 hasConceptScore W2796968804C119857082 @default.
- W2796968804 hasConceptScore W2796968804C154945302 @default.
- W2796968804 hasConceptScore W2796968804C159149176 @default.
- W2796968804 hasConceptScore W2796968804C2780129039 @default.
- W2796968804 hasConceptScore W2796968804C41008148 @default.
- W2796968804 hasConceptScore W2796968804C81917197 @default.
- W2796968804 hasLocation W27969688041 @default.
- W2796968804 hasOpenAccess W2796968804 @default.
- W2796968804 hasPrimaryLocation W27969688041 @default.
- W2796968804 hasRelatedWork W2961085424 @default.
- W2796968804 hasRelatedWork W3046775127 @default.
- W2796968804 hasRelatedWork W3170094116 @default.
- W2796968804 hasRelatedWork W3209574120 @default.
- W2796968804 hasRelatedWork W4205958290 @default.
- W2796968804 hasRelatedWork W4223456145 @default.
- W2796968804 hasRelatedWork W4286629047 @default.
- W2796968804 hasRelatedWork W4306321456 @default.
- W2796968804 hasRelatedWork W4306674287 @default.
- W2796968804 hasRelatedWork W4224009465 @default.
- W2796968804 hasVolume "106" @default.
- W2796968804 isParatext "false" @default.
- W2796968804 isRetracted "false" @default.
- W2796968804 magId "2796968804" @default.
- W2796968804 workType "article" @default.