Matches in SemOpenAlex for { <https://semopenalex.org/work/W2796987495> ?p ?o ?g. }
- W2796987495 endingPage "18" @default.
- W2796987495 startingPage "9" @default.
- W2796987495 abstract "Deprivation indices constitute a valuable tool for assessing health inequalities. A key issue when analyzing deprivation is the choice of the geographical scale and spatial unit of analysis. Our objective was to evaluate statistical and geographical stability of an Area Based Deprivation Index (ABDI) computed at different spatial scales and to study their relation with cardiovascular disease. The present study has been conducted in the city of Madrid, Spain. Madrid divides its territory in three different administrative units nested within each other: census section, neighborhoods and districts. For each unit a deprivation index was calculated through Principal Component Analysis (PCA). The data source was the 2011 national census from where a range of socioeconomic and demographic indicators were selected. To study statistical and geographical stability of deprivation we used an Exploratory Spatial Data Analysis and bivariate Local Indicators of Spatial Association analysis. We also conducted Pearson correlation analyses to study the change in the relationship between deprivation and the prevalence of cardiovascular disease (CVD) across the three scales. At census section and neighborhood level, first component showed four and five factors loading higher than 0.6, respectively. These factors loading related to occupancy/labor market and education. However at district level, first component showed seven factors loading higher than 0.6 and related to occupancy/labor market, education and immigration. With indicators of these factors loading, deprivation indices were calculated for each administrative unit by extracting a single PCA axis. Variance explained for each index was 65%, 86% and 79%, respectively. Bivariate local autocorrelation analyses showed aggregated areas of low and high stability with variable degree of significance in the three scales. The ABDIs calculated at census section level, neighborhood level and district level presented different significant correlations with CVD prevalence (r = 0.328; r = 0.635; and r = 0.739 respectively). These results show that the deprivation index did not remain stable across the three scales, neither were the correlations between deprivation and age-adjusted CVD prevalence. Understanding the stability of a spatial phenomenon across different scales is essential to determine the best unit of aggregation of data when studying an important process such as socioeconomic deprivation and its possible health impacts." @default.
- W2796987495 created "2018-04-24" @default.
- W2796987495 creator A5034797731 @default.
- W2796987495 creator A5044887399 @default.
- W2796987495 creator A5055070789 @default.
- W2796987495 creator A5066165329 @default.
- W2796987495 creator A5073142041 @default.
- W2796987495 date "2018-06-01" @default.
- W2796987495 modified "2023-10-16" @default.
- W2796987495 title "Geographic and statistic stability of deprivation aggregated measures at different spatial units in health research" @default.
- W2796987495 cites W1967823327 @default.
- W2796987495 cites W1968745084 @default.
- W2796987495 cites W1971204122 @default.
- W2796987495 cites W1973268733 @default.
- W2796987495 cites W1973749534 @default.
- W2796987495 cites W1996897230 @default.
- W2796987495 cites W2006154669 @default.
- W2796987495 cites W2006664125 @default.
- W2796987495 cites W2012971421 @default.
- W2796987495 cites W2012985419 @default.
- W2796987495 cites W2016722530 @default.
- W2796987495 cites W2017277564 @default.
- W2796987495 cites W2039115937 @default.
- W2796987495 cites W2040830035 @default.
- W2796987495 cites W2044588374 @default.
- W2796987495 cites W2044683795 @default.
- W2796987495 cites W2052611179 @default.
- W2796987495 cites W2063132774 @default.
- W2796987495 cites W2077755583 @default.
- W2796987495 cites W2094264434 @default.
- W2796987495 cites W2109215792 @default.
- W2796987495 cites W2118898434 @default.
- W2796987495 cites W2123367855 @default.
- W2796987495 cites W2126257855 @default.
- W2796987495 cites W2128884477 @default.
- W2796987495 cites W2131969921 @default.
- W2796987495 cites W2134017609 @default.
- W2796987495 cites W2139019470 @default.
- W2796987495 cites W2149454290 @default.
- W2796987495 cites W2150619908 @default.
- W2796987495 cites W2178761797 @default.
- W2796987495 cites W2431896707 @default.
- W2796987495 cites W2517630143 @default.
- W2796987495 cites W2529754671 @default.
- W2796987495 cites W2567303999 @default.
- W2796987495 cites W2770008767 @default.
- W2796987495 cites W4210481549 @default.
- W2796987495 cites W4210520118 @default.
- W2796987495 cites W4244345616 @default.
- W2796987495 cites W4247818158 @default.
- W2796987495 doi "https://doi.org/10.1016/j.apgeog.2018.04.001" @default.
- W2796987495 hasPublicationYear "2018" @default.
- W2796987495 type Work @default.
- W2796987495 sameAs 2796987495 @default.
- W2796987495 citedByCount "18" @default.
- W2796987495 countsByYear W27969874952019 @default.
- W2796987495 countsByYear W27969874952020 @default.
- W2796987495 countsByYear W27969874952021 @default.
- W2796987495 countsByYear W27969874952022 @default.
- W2796987495 countsByYear W27969874952023 @default.
- W2796987495 crossrefType "journal-article" @default.
- W2796987495 hasAuthorship W2796987495A5034797731 @default.
- W2796987495 hasAuthorship W2796987495A5044887399 @default.
- W2796987495 hasAuthorship W2796987495A5055070789 @default.
- W2796987495 hasAuthorship W2796987495A5066165329 @default.
- W2796987495 hasAuthorship W2796987495A5073142041 @default.
- W2796987495 hasConcept C105795698 @default.
- W2796987495 hasConcept C122637931 @default.
- W2796987495 hasConcept C136764020 @default.
- W2796987495 hasConcept C144024400 @default.
- W2796987495 hasConcept C145420912 @default.
- W2796987495 hasConcept C147077947 @default.
- W2796987495 hasConcept C149923435 @default.
- W2796987495 hasConcept C159620131 @default.
- W2796987495 hasConcept C205649164 @default.
- W2796987495 hasConcept C2777382242 @default.
- W2796987495 hasConcept C2908647359 @default.
- W2796987495 hasConcept C33923547 @default.
- W2796987495 hasConcept C41008148 @default.
- W2796987495 hasConcept C52130261 @default.
- W2796987495 hasConcept C64341305 @default.
- W2796987495 hasConcept C89128539 @default.
- W2796987495 hasConceptScore W2796987495C105795698 @default.
- W2796987495 hasConceptScore W2796987495C122637931 @default.
- W2796987495 hasConceptScore W2796987495C136764020 @default.
- W2796987495 hasConceptScore W2796987495C144024400 @default.
- W2796987495 hasConceptScore W2796987495C145420912 @default.
- W2796987495 hasConceptScore W2796987495C147077947 @default.
- W2796987495 hasConceptScore W2796987495C149923435 @default.
- W2796987495 hasConceptScore W2796987495C159620131 @default.
- W2796987495 hasConceptScore W2796987495C205649164 @default.
- W2796987495 hasConceptScore W2796987495C2777382242 @default.
- W2796987495 hasConceptScore W2796987495C2908647359 @default.
- W2796987495 hasConceptScore W2796987495C33923547 @default.
- W2796987495 hasConceptScore W2796987495C41008148 @default.
- W2796987495 hasConceptScore W2796987495C52130261 @default.
- W2796987495 hasConceptScore W2796987495C64341305 @default.
- W2796987495 hasConceptScore W2796987495C89128539 @default.