Matches in SemOpenAlex for { <https://semopenalex.org/work/W2797112897> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2797112897 endingPage "23" @default.
- W2797112897 startingPage "16" @default.
- W2797112897 abstract "The work aims at developing an image analysis procedure able to distinguish high value fillets of Atlantic cod (Gadus morhua) from those of haddock (Melanogrammus aeglefinus). The images of fresh G. morhua (n = 90) and M. aeglefinus (n = 91) fillets were collected by a flatbed scanner and processed at different levels. Both untreated and edge-based segmented (Canny algorithm) regions of interest were submitted to surface texture evaluation by Grey Level Co-occurrence Matrix analysis. Twelve surface texture variables selected by Principal Component Analysis or by SELECT algorithm were then used to develop Linear Discriminant Analysis models. An average correct classification rate ranging from 86.05 to 92.31% was obtained in prediction, irrespective the use of raw or segmented images. These findings pave the way for a simple machine vision system to be implemented along fish market chain, in order to provide stakeholders with a simple, rapid and cost-effective system useful in fighting commercial frauds." @default.
- W2797112897 created "2018-04-24" @default.
- W2797112897 creator A5028828131 @default.
- W2797112897 creator A5076005340 @default.
- W2797112897 creator A5089496823 @default.
- W2797112897 date "2018-10-01" @default.
- W2797112897 modified "2023-09-27" @default.
- W2797112897 title "Fish fillet authentication by image analysis" @default.
- W2797112897 cites W1985425323 @default.
- W2797112897 cites W1986630321 @default.
- W2797112897 cites W2000176567 @default.
- W2797112897 cites W2039885040 @default.
- W2797112897 cites W2044465660 @default.
- W2797112897 cites W2063422727 @default.
- W2797112897 cites W2064555294 @default.
- W2797112897 cites W2067600259 @default.
- W2797112897 cites W2075704051 @default.
- W2797112897 cites W2092028063 @default.
- W2797112897 cites W2122085882 @default.
- W2797112897 cites W2131251535 @default.
- W2797112897 cites W2139770740 @default.
- W2797112897 cites W2145106362 @default.
- W2797112897 cites W2294829414 @default.
- W2797112897 cites W2534569639 @default.
- W2797112897 cites W2758732711 @default.
- W2797112897 doi "https://doi.org/10.1016/j.jfoodeng.2018.04.012" @default.
- W2797112897 hasPublicationYear "2018" @default.
- W2797112897 type Work @default.
- W2797112897 sameAs 2797112897 @default.
- W2797112897 citedByCount "13" @default.
- W2797112897 countsByYear W27971128972019 @default.
- W2797112897 countsByYear W27971128972020 @default.
- W2797112897 countsByYear W27971128972021 @default.
- W2797112897 countsByYear W27971128972022 @default.
- W2797112897 countsByYear W27971128972023 @default.
- W2797112897 crossrefType "journal-article" @default.
- W2797112897 hasAuthorship W2797112897A5028828131 @default.
- W2797112897 hasAuthorship W2797112897A5076005340 @default.
- W2797112897 hasAuthorship W2797112897A5089496823 @default.
- W2797112897 hasBestOaLocation W27971128972 @default.
- W2797112897 hasConcept C115961682 @default.
- W2797112897 hasConcept C117479156 @default.
- W2797112897 hasConcept C153180895 @default.
- W2797112897 hasConcept C154945302 @default.
- W2797112897 hasConcept C27438332 @default.
- W2797112897 hasConcept C2777080836 @default.
- W2797112897 hasConcept C2777883778 @default.
- W2797112897 hasConcept C2909208804 @default.
- W2797112897 hasConcept C31972630 @default.
- W2797112897 hasConcept C33923547 @default.
- W2797112897 hasConcept C41008148 @default.
- W2797112897 hasConcept C505870484 @default.
- W2797112897 hasConcept C63099799 @default.
- W2797112897 hasConcept C69738355 @default.
- W2797112897 hasConcept C86803240 @default.
- W2797112897 hasConcept C9417928 @default.
- W2797112897 hasConceptScore W2797112897C115961682 @default.
- W2797112897 hasConceptScore W2797112897C117479156 @default.
- W2797112897 hasConceptScore W2797112897C153180895 @default.
- W2797112897 hasConceptScore W2797112897C154945302 @default.
- W2797112897 hasConceptScore W2797112897C27438332 @default.
- W2797112897 hasConceptScore W2797112897C2777080836 @default.
- W2797112897 hasConceptScore W2797112897C2777883778 @default.
- W2797112897 hasConceptScore W2797112897C2909208804 @default.
- W2797112897 hasConceptScore W2797112897C31972630 @default.
- W2797112897 hasConceptScore W2797112897C33923547 @default.
- W2797112897 hasConceptScore W2797112897C41008148 @default.
- W2797112897 hasConceptScore W2797112897C505870484 @default.
- W2797112897 hasConceptScore W2797112897C63099799 @default.
- W2797112897 hasConceptScore W2797112897C69738355 @default.
- W2797112897 hasConceptScore W2797112897C86803240 @default.
- W2797112897 hasConceptScore W2797112897C9417928 @default.
- W2797112897 hasLocation W27971128971 @default.
- W2797112897 hasLocation W27971128972 @default.
- W2797112897 hasOpenAccess W2797112897 @default.
- W2797112897 hasPrimaryLocation W27971128971 @default.
- W2797112897 hasRelatedWork W2007085820 @default.
- W2797112897 hasRelatedWork W2012536070 @default.
- W2797112897 hasRelatedWork W2083198496 @default.
- W2797112897 hasRelatedWork W2105666012 @default.
- W2797112897 hasRelatedWork W2115271694 @default.
- W2797112897 hasRelatedWork W2322815062 @default.
- W2797112897 hasRelatedWork W2380927352 @default.
- W2797112897 hasRelatedWork W2464524057 @default.
- W2797112897 hasRelatedWork W2543841263 @default.
- W2797112897 hasRelatedWork W3199391183 @default.
- W2797112897 hasVolume "234" @default.
- W2797112897 isParatext "false" @default.
- W2797112897 isRetracted "false" @default.
- W2797112897 magId "2797112897" @default.
- W2797112897 workType "article" @default.