Matches in SemOpenAlex for { <https://semopenalex.org/work/W2797188668> ?p ?o ?g. }
- W2797188668 endingPage "75" @default.
- W2797188668 startingPage "63" @default.
- W2797188668 abstract "The objective of this work was to assess the extent to which calcite dissolution rate (Rcalcite) measured at controlled saturation state in mixed flow set-ups could be upscaled to column experiments, where the solution composition was variable in space and time. The dissolution rate of the (104) calcite face was investigated in mixed flow reactor set-ups at room temperature and pH 8. Various saturation conditions were studied by changing the composition of the inlet solution, enabling the determination of an empirical relation between Rcalcite and the Gibbs free energy of calcite dissolution (∆G) by measuring the surface topography with vertical scanning interferometry (VSI). The prevalent dissolution mode (i.e., etch pit nucleation or homogeneous surface retreat) was assessed with the same method. A dramatic decrease of the dissolution rate was observed for −8 < ∆G < −3 kJ/mol, correlated with a switch in the dissolution regime (inhibition of etch pit nucleation). The resulting Rcalcite-∆G relation, which is at odds with that derived from transition state theory (TST), was successfully fitted using the stepwave model (SWM). These experiments were supplemented with plug-flow column experiments, consisting of a chemically inert porous medium and oriented rhombohedral calcite single-crystals (0.4 × 0.4 cm2) regularly distributed in the column. The dissolution rates of calcite single crystals all along the column were retrieved using VSI on the recovered crystals at the end of the experiments. These latter experiments were compared with 1D and 2D reactive transport simulations, using either the TST- or the SWM-derived rate equation determined from our mixed-flow reactor experiments. The reactive transport simulations revealed that (i) 1D-simulations overestimated the dissolution rate of upstream and downstream calcite faces by a ~3- and ~20-fold factor, (ii) 2D-simulations satisfactorily reproduced the dissolution rates of all faces without any fitting parameter, within experimental uncertainties and (iii) both models slightly overestimated the steady-state concentration of calcium at the outlet of the column. Overall, this study can be considered as one of the multiple intermediate steps between chemostatic experiments and field measurements to assess the validity of the classical bottom-up upscaling approach. It also provides insight into our ability to model fluid flow and solution composition in the vicinity of dissolving single crystals." @default.
- W2797188668 created "2018-04-24" @default.
- W2797188668 creator A5033507984 @default.
- W2797188668 creator A5060118368 @default.
- W2797188668 creator A5063677376 @default.
- W2797188668 creator A5079423209 @default.
- W2797188668 date "2018-05-01" @default.
- W2797188668 modified "2023-10-13" @default.
- W2797188668 title "From mixed flow reactor to column experiments and modeling: Upscaling of calcite dissolution rate" @default.
- W2797188668 cites W1643676121 @default.
- W2797188668 cites W1967251656 @default.
- W2797188668 cites W1972491522 @default.
- W2797188668 cites W1975747953 @default.
- W2797188668 cites W1987285774 @default.
- W2797188668 cites W1987737096 @default.
- W2797188668 cites W1992346705 @default.
- W2797188668 cites W1994869677 @default.
- W2797188668 cites W2007593832 @default.
- W2797188668 cites W2008292009 @default.
- W2797188668 cites W2010621570 @default.
- W2797188668 cites W2014965187 @default.
- W2797188668 cites W2019449868 @default.
- W2797188668 cites W2020496176 @default.
- W2797188668 cites W2025696977 @default.
- W2797188668 cites W2030992183 @default.
- W2797188668 cites W2035803994 @default.
- W2797188668 cites W2037134409 @default.
- W2797188668 cites W2046455047 @default.
- W2797188668 cites W2053627401 @default.
- W2797188668 cites W2054976273 @default.
- W2797188668 cites W2059695310 @default.
- W2797188668 cites W2061675171 @default.
- W2797188668 cites W2062178130 @default.
- W2797188668 cites W2064999318 @default.
- W2797188668 cites W2069833252 @default.
- W2797188668 cites W2072475832 @default.
- W2797188668 cites W2075813102 @default.
- W2797188668 cites W2075925369 @default.
- W2797188668 cites W2077750240 @default.
- W2797188668 cites W2077840185 @default.
- W2797188668 cites W2082706162 @default.
- W2797188668 cites W2082976375 @default.
- W2797188668 cites W2083529257 @default.
- W2797188668 cites W2087326422 @default.
- W2797188668 cites W2089725745 @default.
- W2797188668 cites W2092511405 @default.
- W2797188668 cites W2093713534 @default.
- W2797188668 cites W2095132924 @default.
- W2797188668 cites W2095777147 @default.
- W2797188668 cites W2103824993 @default.
- W2797188668 cites W2113391761 @default.
- W2797188668 cites W2124781550 @default.
- W2797188668 cites W2133564880 @default.
- W2797188668 cites W2134408931 @default.
- W2797188668 cites W2140824080 @default.
- W2797188668 cites W2423492156 @default.
- W2797188668 cites W2470412187 @default.
- W2797188668 cites W2522081691 @default.
- W2797188668 cites W2524455441 @default.
- W2797188668 cites W2594474264 @default.
- W2797188668 cites W2598693936 @default.
- W2797188668 cites W2760135963 @default.
- W2797188668 cites W2764086964 @default.
- W2797188668 doi "https://doi.org/10.1016/j.chemgeo.2018.04.017" @default.
- W2797188668 hasPublicationYear "2018" @default.
- W2797188668 type Work @default.
- W2797188668 sameAs 2797188668 @default.
- W2797188668 citedByCount "27" @default.
- W2797188668 countsByYear W27971886682018 @default.
- W2797188668 countsByYear W27971886682019 @default.
- W2797188668 countsByYear W27971886682020 @default.
- W2797188668 countsByYear W27971886682021 @default.
- W2797188668 countsByYear W27971886682022 @default.
- W2797188668 countsByYear W27971886682023 @default.
- W2797188668 crossrefType "journal-article" @default.
- W2797188668 hasAuthorship W2797188668A5033507984 @default.
- W2797188668 hasAuthorship W2797188668A5060118368 @default.
- W2797188668 hasAuthorship W2797188668A5063677376 @default.
- W2797188668 hasAuthorship W2797188668A5079423209 @default.
- W2797188668 hasConcept C113196181 @default.
- W2797188668 hasConcept C114614502 @default.
- W2797188668 hasConcept C121332964 @default.
- W2797188668 hasConcept C127313418 @default.
- W2797188668 hasConcept C147789679 @default.
- W2797188668 hasConcept C172120300 @default.
- W2797188668 hasConcept C185592680 @default.
- W2797188668 hasConcept C192562407 @default.
- W2797188668 hasConcept C199289684 @default.
- W2797188668 hasConcept C2780191791 @default.
- W2797188668 hasConcept C33923547 @default.
- W2797188668 hasConcept C43617362 @default.
- W2797188668 hasConcept C61048295 @default.
- W2797188668 hasConcept C88380143 @default.
- W2797188668 hasConcept C97355855 @default.
- W2797188668 hasConcept C9930424 @default.
- W2797188668 hasConceptScore W2797188668C113196181 @default.
- W2797188668 hasConceptScore W2797188668C114614502 @default.
- W2797188668 hasConceptScore W2797188668C121332964 @default.