Matches in SemOpenAlex for { <https://semopenalex.org/work/W2797346317> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2797346317 endingPage "88" @default.
- W2797346317 startingPage "80" @default.
- W2797346317 abstract "Abstract The alternating current field measurement (ACFM) technique can be applied for surface-breaking fatigue crack detection and sizing; the link between the ACFM signal and crack size is well understood for individual cracks. However, the ACFM response to multiple clustered cracks is significantly different to that of isolated cracks. In railway rails the high wheel-rail forces can lead to rolling contact fatigue (RCF) cracks. Often cracks appear together in small clusters or in long stretches. The accurate characterisation of such fatigue cracks is essential for carrying out efficient and safe repair and maintenance. This paper presents a method for sizing the important sub-surface section of multiple cracks using ACFM via the application of an artificial neural network (ANN). The approach is demonstrated using a railway case study: a simulation-based dataset of signal response covering the range of RCF cracks typically seen in in-service railway tracks has been generated to give a thorough representation of the effect of clustered crack parameters on the ACFM response. A 5 × 5 × 2 × 1 multi-layer ANN has been optimised and trained using the validated simulation database to learn the inverse relationship between the crack pocket length (desired output) and the ACFM signal for a given cluster of RCF cracks. The network has been evaluated on a set of experimental data to size cracks of known dimensions from ACFM measurements and also on unseen simulation data. Results from both simulation and experiment show that the approach presented can be used to size clustered cracks to approximately the same degree of accuracy as is possible for isolated cracks." @default.
- W2797346317 created "2018-04-24" @default.
- W2797346317 creator A5002277195 @default.
- W2797346317 creator A5049159102 @default.
- W2797346317 creator A5054912771 @default.
- W2797346317 creator A5088882574 @default.
- W2797346317 date "2018-09-01" @default.
- W2797346317 modified "2023-10-03" @default.
- W2797346317 title "Characterisation of clustered cracks using an ACFM sensor and application of an artificial neural network" @default.
- W2797346317 cites W1484638608 @default.
- W2797346317 cites W1965254972 @default.
- W2797346317 cites W1972683174 @default.
- W2797346317 cites W1976692507 @default.
- W2797346317 cites W1995652685 @default.
- W2797346317 cites W2000421548 @default.
- W2797346317 cites W2001936499 @default.
- W2797346317 cites W2004226507 @default.
- W2797346317 cites W2013188187 @default.
- W2797346317 cites W2015168392 @default.
- W2797346317 cites W2021982587 @default.
- W2797346317 cites W2029670657 @default.
- W2797346317 cites W2030387428 @default.
- W2797346317 cites W2043471936 @default.
- W2797346317 cites W2044653390 @default.
- W2797346317 cites W2051412493 @default.
- W2797346317 cites W2052368448 @default.
- W2797346317 cites W2054661553 @default.
- W2797346317 cites W2061738560 @default.
- W2797346317 cites W2063045209 @default.
- W2797346317 cites W2069747077 @default.
- W2797346317 cites W2077119855 @default.
- W2797346317 cites W2080963377 @default.
- W2797346317 cites W2092414750 @default.
- W2797346317 cites W2100072339 @default.
- W2797346317 cites W2100788482 @default.
- W2797346317 cites W2106474383 @default.
- W2797346317 cites W2110299957 @default.
- W2797346317 cites W2112438422 @default.
- W2797346317 cites W2117918559 @default.
- W2797346317 cites W2128759145 @default.
- W2797346317 cites W2132603731 @default.
- W2797346317 cites W2143096464 @default.
- W2797346317 cites W2159144408 @default.
- W2797346317 cites W2264306497 @default.
- W2797346317 cites W2406523001 @default.
- W2797346317 cites W2586611611 @default.
- W2797346317 cites W2793967506 @default.
- W2797346317 cites W2983351153 @default.
- W2797346317 cites W4239366826 @default.
- W2797346317 cites W4244079469 @default.
- W2797346317 doi "https://doi.org/10.1016/j.ndteint.2018.04.007" @default.
- W2797346317 hasPublicationYear "2018" @default.
- W2797346317 type Work @default.
- W2797346317 sameAs 2797346317 @default.
- W2797346317 citedByCount "38" @default.
- W2797346317 countsByYear W27973463172019 @default.
- W2797346317 countsByYear W27973463172020 @default.
- W2797346317 countsByYear W27973463172021 @default.
- W2797346317 countsByYear W27973463172022 @default.
- W2797346317 countsByYear W27973463172023 @default.
- W2797346317 crossrefType "journal-article" @default.
- W2797346317 hasAuthorship W2797346317A5002277195 @default.
- W2797346317 hasAuthorship W2797346317A5049159102 @default.
- W2797346317 hasAuthorship W2797346317A5054912771 @default.
- W2797346317 hasAuthorship W2797346317A5088882574 @default.
- W2797346317 hasBestOaLocation W27973463172 @default.
- W2797346317 hasConcept C127413603 @default.
- W2797346317 hasConcept C153180895 @default.
- W2797346317 hasConcept C154945302 @default.
- W2797346317 hasConcept C41008148 @default.
- W2797346317 hasConcept C50644808 @default.
- W2797346317 hasConceptScore W2797346317C127413603 @default.
- W2797346317 hasConceptScore W2797346317C153180895 @default.
- W2797346317 hasConceptScore W2797346317C154945302 @default.
- W2797346317 hasConceptScore W2797346317C41008148 @default.
- W2797346317 hasConceptScore W2797346317C50644808 @default.
- W2797346317 hasFunder F4320334627 @default.
- W2797346317 hasLocation W27973463171 @default.
- W2797346317 hasLocation W27973463172 @default.
- W2797346317 hasOpenAccess W2797346317 @default.
- W2797346317 hasPrimaryLocation W27973463171 @default.
- W2797346317 hasRelatedWork W1978450727 @default.
- W2797346317 hasRelatedWork W2033914206 @default.
- W2797346317 hasRelatedWork W2146076056 @default.
- W2797346317 hasRelatedWork W2163831990 @default.
- W2797346317 hasRelatedWork W2378160586 @default.
- W2797346317 hasRelatedWork W2386387936 @default.
- W2797346317 hasRelatedWork W2899084033 @default.
- W2797346317 hasRelatedWork W3003836766 @default.
- W2797346317 hasRelatedWork W4244943737 @default.
- W2797346317 hasRelatedWork W2289108895 @default.
- W2797346317 hasVolume "98" @default.
- W2797346317 isParatext "false" @default.
- W2797346317 isRetracted "false" @default.
- W2797346317 magId "2797346317" @default.
- W2797346317 workType "article" @default.