Matches in SemOpenAlex for { <https://semopenalex.org/work/W2797785003> ?p ?o ?g. }
- W2797785003 endingPage "473" @default.
- W2797785003 startingPage "458" @default.
- W2797785003 abstract "Contrary to established wisdom, selection in the long run rarely favours parasites that maximise their epidemiological basic reproduction ratio, R0. R0 maximisation only occurs in models with simple forms of environmental feedback. In realistic host–parasite interactions, ecological processes will commonly preclude R0 maximisation. The dimension of the environmental feedback loop here emerges as a unifying concept. A widespread tenet is that evolution of pathogens maximises their basic reproduction ratio, R0. The breakdown of this principle is typically discussed as exception. Here, we argue that a radically different stance is needed, based on evolutionarily stable strategy (ESS) arguments that take account of the ‘dimension of the environmental feedback loop’. The R0 maximisation paradigm requires this feedback loop to be one-dimensional, which notably excludes pathogen diversification. By contrast, almost all realistic ecological ingredients of host–pathogen interactions (density-dependent mortality, multiple infections, limited cross-immunity, multiple transmission routes, host heterogeneity, and spatial structure) will lead to multidimensional feedbacks. A widespread tenet is that evolution of pathogens maximises their basic reproduction ratio, R0. The breakdown of this principle is typically discussed as exception. Here, we argue that a radically different stance is needed, based on evolutionarily stable strategy (ESS) arguments that take account of the ‘dimension of the environmental feedback loop’. The R0 maximisation paradigm requires this feedback loop to be one-dimensional, which notably excludes pathogen diversification. By contrast, almost all realistic ecological ingredients of host–pathogen interactions (density-dependent mortality, multiple infections, limited cross-immunity, multiple transmission routes, host heterogeneity, and spatial structure) will lead to multidimensional feedbacks. a strategy that, if sufficiently common, creates an environment in which no alternative strategy can invade. per-capita growth rate of a rare mutant strain in the environment created by the resident population. This can be written as a function of the traits and of the environment, ρ(Y|Eˆ), or as a function of the mutant and resident traits, s(Y|X). any function of the traits and the environment that has the same sign as invasion fitness and, therefore, provides the same information about long-term evolution. a property of the traits (and possibly the environment) that enters into the calculation of, but is not on its own sufficient to compute, a fitness proxy. a function ψ(X) of the traits such that, for any constraint on the traits, the ESSs can be calculated by maximising this function (for instance, R0 in the classical SIR model). a function ϕ(E) of the environment that is minimised at an ESS, for any constraint on the traits (for instance, the density of susceptibles in the classical SIR model). the term dimension of the feedback loop refers to the number of environmental variables (such as the density of susceptible hosts) that are controlled by the population dynamics of the pathogen and influence ℛ in different manners. However, for ESS calculations, only the sign of ℛ–1 matters. The term ‘effective dimension’ refers to the number of variables that independently influence this sign. In simple models, the effective dimension and the dimension are often equal, but in structured models, exceptions where the effective dimension is lower are commonplace." @default.
- W2797785003 created "2018-04-24" @default.
- W2797785003 creator A5005514824 @default.
- W2797785003 creator A5088901577 @default.
- W2797785003 date "2018-06-01" @default.
- W2797785003 modified "2023-10-17" @default.
- W2797785003 title "Beyond R0 Maximisation: On Pathogen Evolution and Environmental Dimensions" @default.
- W2797785003 cites W1561556104 @default.
- W2797785003 cites W1574004712 @default.
- W2797785003 cites W1584186629 @default.
- W2797785003 cites W1768861897 @default.
- W2797785003 cites W1900546576 @default.
- W2797785003 cites W1911547240 @default.
- W2797785003 cites W1978051108 @default.
- W2797785003 cites W1980555349 @default.
- W2797785003 cites W1982577009 @default.
- W2797785003 cites W1984132513 @default.
- W2797785003 cites W1984260683 @default.
- W2797785003 cites W1985693980 @default.
- W2797785003 cites W1991365171 @default.
- W2797785003 cites W1992966607 @default.
- W2797785003 cites W1994801794 @default.
- W2797785003 cites W2002999094 @default.
- W2797785003 cites W2018267078 @default.
- W2797785003 cites W2019051428 @default.
- W2797785003 cites W2019876916 @default.
- W2797785003 cites W2020411383 @default.
- W2797785003 cites W2022778964 @default.
- W2797785003 cites W2023162973 @default.
- W2797785003 cites W2025363484 @default.
- W2797785003 cites W2030338338 @default.
- W2797785003 cites W2030453609 @default.
- W2797785003 cites W2035349831 @default.
- W2797785003 cites W2040797098 @default.
- W2797785003 cites W2041572706 @default.
- W2797785003 cites W2042381353 @default.
- W2797785003 cites W2045240339 @default.
- W2797785003 cites W2046518060 @default.
- W2797785003 cites W2046783933 @default.
- W2797785003 cites W2047478566 @default.
- W2797785003 cites W2055392108 @default.
- W2797785003 cites W2059604253 @default.
- W2797785003 cites W2059973505 @default.
- W2797785003 cites W2063838707 @default.
- W2797785003 cites W2064906700 @default.
- W2797785003 cites W2069495567 @default.
- W2797785003 cites W2070649137 @default.
- W2797785003 cites W2071243023 @default.
- W2797785003 cites W2072699609 @default.
- W2797785003 cites W2079945559 @default.
- W2797785003 cites W2081038973 @default.
- W2797785003 cites W2082836630 @default.
- W2797785003 cites W2083401972 @default.
- W2797785003 cites W2086303757 @default.
- W2797785003 cites W2093955911 @default.
- W2797785003 cites W2098201432 @default.
- W2797785003 cites W2104767128 @default.
- W2797785003 cites W2112680994 @default.
- W2797785003 cites W2117560113 @default.
- W2797785003 cites W2121050439 @default.
- W2797785003 cites W2121271992 @default.
- W2797785003 cites W2121277422 @default.
- W2797785003 cites W2124139689 @default.
- W2797785003 cites W2125712020 @default.
- W2797785003 cites W2137901228 @default.
- W2797785003 cites W2142292745 @default.
- W2797785003 cites W2151775334 @default.
- W2797785003 cites W2156611626 @default.
- W2797785003 cites W2157604554 @default.
- W2797785003 cites W2157813453 @default.
- W2797785003 cites W2160006518 @default.
- W2797785003 cites W2173691530 @default.
- W2797785003 cites W2259664643 @default.
- W2797785003 cites W2278623573 @default.
- W2797785003 cites W2329534941 @default.
- W2797785003 cites W2333175664 @default.
- W2797785003 cites W2336614799 @default.
- W2797785003 cites W2357751210 @default.
- W2797785003 cites W2416983633 @default.
- W2797785003 cites W2537536312 @default.
- W2797785003 cites W2563504706 @default.
- W2797785003 cites W4245886704 @default.
- W2797785003 doi "https://doi.org/10.1016/j.tree.2018.02.004" @default.
- W2797785003 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29665966" @default.
- W2797785003 hasPublicationYear "2018" @default.
- W2797785003 type Work @default.
- W2797785003 sameAs 2797785003 @default.
- W2797785003 citedByCount "70" @default.
- W2797785003 countsByYear W27977850032018 @default.
- W2797785003 countsByYear W27977850032019 @default.
- W2797785003 countsByYear W27977850032020 @default.
- W2797785003 countsByYear W27977850032021 @default.
- W2797785003 countsByYear W27977850032022 @default.
- W2797785003 countsByYear W27977850032023 @default.
- W2797785003 crossrefType "journal-article" @default.
- W2797785003 hasAuthorship W2797785003A5005514824 @default.
- W2797785003 hasAuthorship W2797785003A5088901577 @default.
- W2797785003 hasBestOaLocation W27977850034 @default.