Matches in SemOpenAlex for { <https://semopenalex.org/work/W2797837275> ?p ?o ?g. }
- W2797837275 abstract "Alternative polyadenylation (APA) is a major driver of transcriptome diversity in human cells. Here, we use deep learning to predict APA from DNA sequence alone. We trained our model (APARENT, APA REgression NeT) on isoform expression data from over three million APA reporters, built by inserting random sequence into twelve distinct 3’UTR contexts. Predictions are highly accurate across both synthetic and genomic contexts; when tasked with inferring APA in human 3’UTRs, APARENT outperforms models trained exclusively on endogenous data. Visualizing features learned across all network layers reveals that APARENT recognizes sequence motifs known to recruit APA regulators, discovers previously unknown sequence determinants of cleavage site selection, and integrates these features into a comprehensive, interpretable cis-regulatory code. Finally, we use APARENT to quantify the impact of genetic variants on APA. Our approach detects pathogenic variants in a wide range of disease contexts, expanding our understanding of the genetic origins of disease." @default.
- W2797837275 created "2018-04-24" @default.
- W2797837275 creator A5008564858 @default.
- W2797837275 creator A5008646125 @default.
- W2797837275 creator A5021731745 @default.
- W2797837275 creator A5050993880 @default.
- W2797837275 date "2018-04-12" @default.
- W2797837275 modified "2023-09-25" @default.
- W2797837275 title "Predicting the Impact of cis-Regulatory Variation on Alternative Polyadenylation" @default.
- W2797837275 cites W1019830208 @default.
- W2797837275 cites W1510239610 @default.
- W2797837275 cites W1749659233 @default.
- W2797837275 cites W1828587713 @default.
- W2797837275 cites W1902809146 @default.
- W2797837275 cites W1976604734 @default.
- W2797837275 cites W1985267020 @default.
- W2797837275 cites W1991230146 @default.
- W2797837275 cites W1993219043 @default.
- W2797837275 cites W2009113685 @default.
- W2797837275 cites W2012295982 @default.
- W2797837275 cites W2014747507 @default.
- W2797837275 cites W2020490094 @default.
- W2797837275 cites W2020652334 @default.
- W2797837275 cites W2025943989 @default.
- W2797837275 cites W2040410152 @default.
- W2797837275 cites W2042783076 @default.
- W2797837275 cites W2077940776 @default.
- W2797837275 cites W2079591756 @default.
- W2797837275 cites W2083996291 @default.
- W2797837275 cites W2087789109 @default.
- W2797837275 cites W2089029993 @default.
- W2797837275 cites W2091808830 @default.
- W2797837275 cites W2101975376 @default.
- W2797837275 cites W2103534177 @default.
- W2797837275 cites W2103777723 @default.
- W2797837275 cites W2105694586 @default.
- W2797837275 cites W2118834857 @default.
- W2797837275 cites W2126456089 @default.
- W2797837275 cites W2132224717 @default.
- W2797837275 cites W2155077792 @default.
- W2797837275 cites W2159730169 @default.
- W2797837275 cites W2166494447 @default.
- W2797837275 cites W2168088503 @default.
- W2797837275 cites W2171791048 @default.
- W2797837275 cites W2198606573 @default.
- W2797837275 cites W2345512687 @default.
- W2797837275 cites W2461965332 @default.
- W2797837275 cites W2525507785 @default.
- W2797837275 cites W2610479249 @default.
- W2797837275 cites W2615053258 @default.
- W2797837275 cites W2752403657 @default.
- W2797837275 cites W2765231623 @default.
- W2797837275 cites W2770026599 @default.
- W2797837275 cites W2772439186 @default.
- W2797837275 cites W2774216375 @default.
- W2797837275 cites W2776451827 @default.
- W2797837275 cites W2778462241 @default.
- W2797837275 cites W2785666191 @default.
- W2797837275 cites W2951203227 @default.
- W2797837275 cites W4253306170 @default.
- W2797837275 cites W2124609658 @default.
- W2797837275 doi "https://doi.org/10.1101/300061" @default.
- W2797837275 hasPublicationYear "2018" @default.
- W2797837275 type Work @default.
- W2797837275 sameAs 2797837275 @default.
- W2797837275 citedByCount "4" @default.
- W2797837275 countsByYear W27978372752018 @default.
- W2797837275 countsByYear W27978372752019 @default.
- W2797837275 crossrefType "posted-content" @default.
- W2797837275 hasAuthorship W2797837275A5008564858 @default.
- W2797837275 hasAuthorship W2797837275A5008646125 @default.
- W2797837275 hasAuthorship W2797837275A5021731745 @default.
- W2797837275 hasAuthorship W2797837275A5050993880 @default.
- W2797837275 hasBestOaLocation W27978372751 @default.
- W2797837275 hasConcept C104317684 @default.
- W2797837275 hasConcept C105580179 @default.
- W2797837275 hasConcept C142575336 @default.
- W2797837275 hasConcept C150194340 @default.
- W2797837275 hasConcept C154945302 @default.
- W2797837275 hasConcept C165864922 @default.
- W2797837275 hasConcept C21592294 @default.
- W2797837275 hasConcept C2778112365 @default.
- W2797837275 hasConcept C41008148 @default.
- W2797837275 hasConcept C54355233 @default.
- W2797837275 hasConcept C70721500 @default.
- W2797837275 hasConcept C81917197 @default.
- W2797837275 hasConcept C86803240 @default.
- W2797837275 hasConcept C89604277 @default.
- W2797837275 hasConceptScore W2797837275C104317684 @default.
- W2797837275 hasConceptScore W2797837275C105580179 @default.
- W2797837275 hasConceptScore W2797837275C142575336 @default.
- W2797837275 hasConceptScore W2797837275C150194340 @default.
- W2797837275 hasConceptScore W2797837275C154945302 @default.
- W2797837275 hasConceptScore W2797837275C165864922 @default.
- W2797837275 hasConceptScore W2797837275C21592294 @default.
- W2797837275 hasConceptScore W2797837275C2778112365 @default.
- W2797837275 hasConceptScore W2797837275C41008148 @default.
- W2797837275 hasConceptScore W2797837275C54355233 @default.
- W2797837275 hasConceptScore W2797837275C70721500 @default.
- W2797837275 hasConceptScore W2797837275C81917197 @default.