Matches in SemOpenAlex for { <https://semopenalex.org/work/W2797869824> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2797869824 abstract "In algorithmic graph theory, a classic open question is to determine the complexity of the Maximum Independent Set problem on $P_t$-free graphs, that is, on graphs not containing any induced path on $t$ vertices. So far, polynomial-time algorithms are known only for $tle 5$ [Lokshtanov et al., SODA 2014, 570--581, 2014], and an algorithm for $t=6$ announced recently [Grzesik et al. Arxiv 1707.05491, 2017]. Here we study the existence of subexponential-time algorithms for the problem: we show that for any $tge 1$, there is an algorithm for Maximum Independent Set on $P_t$-free graphs whose running time is subexponential in the number of vertices. Even for the weighted version MWIS, the problem is solvable in $2^{O(sqrt {tn log n})}$ time on $P_t$-free graphs. For approximation of MIS in broom-free graphs, a similar time bound is proved. Scattered Set is the generalization of Maximum Independent Set where the vertices of the solution are required to be at distance at least $d$ from each other. We give a complete characterization of those graphs $H$ for which $d$-Scattered Set on $H$-free graphs can be solved in time subexponential in the size of the input (that is, in the number of vertices plus the number of edges): If every component of $H$ is a path, then $d$-Scattered Set on $H$-free graphs with $n$ vertices and $m$ edges can be solved in time $2^{O(|V(H)|sqrt{n+m}log (n+m))}$, even if $d$ is part of the input. Otherwise, assuming the Exponential-Time Hypothesis (ETH), there is no $2^{o(n+m)}$-time algorithm for $d$-Scattered Set for any fixed $dge 3$ on $H$-free graphs with $n$-vertices and $m$-edges." @default.
- W2797869824 created "2018-04-24" @default.
- W2797869824 creator A5012849997 @default.
- W2797869824 creator A5017472275 @default.
- W2797869824 creator A5026437192 @default.
- W2797869824 creator A5038531405 @default.
- W2797869824 creator A5041371022 @default.
- W2797869824 creator A5059330513 @default.
- W2797869824 date "2018-04-11" @default.
- W2797869824 modified "2023-09-27" @default.
- W2797869824 title "Subexponential-time Algorithms for Maximum Independent Set in $P_t$-free and Broom-free Graphs" @default.
- W2797869824 cites W1963707128 @default.
- W2797869824 cites W1995725694 @default.
- W2797869824 cites W2001258629 @default.
- W2797869824 cites W2048280336 @default.
- W2797869824 cites W2187700168 @default.
- W2797869824 cites W2484570912 @default.
- W2797869824 cites W2594519958 @default.
- W2797869824 cites W2953059252 @default.
- W2797869824 cites W968859509 @default.
- W2797869824 hasPublicationYear "2018" @default.
- W2797869824 type Work @default.
- W2797869824 sameAs 2797869824 @default.
- W2797869824 citedByCount "0" @default.
- W2797869824 crossrefType "posted-content" @default.
- W2797869824 hasAuthorship W2797869824A5012849997 @default.
- W2797869824 hasAuthorship W2797869824A5017472275 @default.
- W2797869824 hasAuthorship W2797869824A5026437192 @default.
- W2797869824 hasAuthorship W2797869824A5038531405 @default.
- W2797869824 hasAuthorship W2797869824A5041371022 @default.
- W2797869824 hasAuthorship W2797869824A5059330513 @default.
- W2797869824 hasConcept C102192266 @default.
- W2797869824 hasConcept C114614502 @default.
- W2797869824 hasConcept C118615104 @default.
- W2797869824 hasConcept C122818955 @default.
- W2797869824 hasConcept C132525143 @default.
- W2797869824 hasConcept C134306372 @default.
- W2797869824 hasConcept C160446614 @default.
- W2797869824 hasConcept C18359143 @default.
- W2797869824 hasConcept C311688 @default.
- W2797869824 hasConcept C33923547 @default.
- W2797869824 hasConcept C60933471 @default.
- W2797869824 hasConcept C77553402 @default.
- W2797869824 hasConceptScore W2797869824C102192266 @default.
- W2797869824 hasConceptScore W2797869824C114614502 @default.
- W2797869824 hasConceptScore W2797869824C118615104 @default.
- W2797869824 hasConceptScore W2797869824C122818955 @default.
- W2797869824 hasConceptScore W2797869824C132525143 @default.
- W2797869824 hasConceptScore W2797869824C134306372 @default.
- W2797869824 hasConceptScore W2797869824C160446614 @default.
- W2797869824 hasConceptScore W2797869824C18359143 @default.
- W2797869824 hasConceptScore W2797869824C311688 @default.
- W2797869824 hasConceptScore W2797869824C33923547 @default.
- W2797869824 hasConceptScore W2797869824C60933471 @default.
- W2797869824 hasConceptScore W2797869824C77553402 @default.
- W2797869824 hasLocation W27978698241 @default.
- W2797869824 hasOpenAccess W2797869824 @default.
- W2797869824 hasPrimaryLocation W27978698241 @default.
- W2797869824 hasRelatedWork W1509794588 @default.
- W2797869824 hasRelatedWork W1998002108 @default.
- W2797869824 hasRelatedWork W2020187144 @default.
- W2797869824 hasRelatedWork W2095163132 @default.
- W2797869824 hasRelatedWork W2121479160 @default.
- W2797869824 hasRelatedWork W2296718286 @default.
- W2797869824 hasRelatedWork W2610086104 @default.
- W2797869824 hasRelatedWork W2777779535 @default.
- W2797869824 hasRelatedWork W2907241826 @default.
- W2797869824 hasRelatedWork W2942467327 @default.
- W2797869824 hasRelatedWork W2989902795 @default.
- W2797869824 hasRelatedWork W3021187640 @default.
- W2797869824 hasRelatedWork W3045979265 @default.
- W2797869824 hasRelatedWork W3088628599 @default.
- W2797869824 hasRelatedWork W3091872492 @default.
- W2797869824 hasRelatedWork W3092605452 @default.
- W2797869824 hasRelatedWork W3101910950 @default.
- W2797869824 hasRelatedWork W3173922011 @default.
- W2797869824 hasRelatedWork W3210180238 @default.
- W2797869824 hasRelatedWork W3034527053 @default.
- W2797869824 isParatext "false" @default.
- W2797869824 isRetracted "false" @default.
- W2797869824 magId "2797869824" @default.
- W2797869824 workType "article" @default.