Matches in SemOpenAlex for { <https://semopenalex.org/work/W2797970193> ?p ?o ?g. }
- W2797970193 endingPage "498" @default.
- W2797970193 startingPage "491" @default.
- W2797970193 abstract "Most of the conventional multidimensional differential sensors currently need at least two-step fabrication, namely synthesis of probe(s) and identification of multiple analytes by mixing of analytes with probe(s), and were conducted using multiple sensing elements or several devices. In the study, we chose five different nucleobases (adenine, cytosine, guanine, thymine, and uracil) as model analytes, and found that under hydrothermal conditions, sodium citrate could react directly with various nucleobases to yield different nitrogen-doped carbon nanodots (CDs). The CDs synthesized from different nucleobases exhibited different fluorescent properties, leading to their respective characteristic fluorescence spectra. Hence, we combined the fluorescence spectra of the CDs with advanced chemometrics like principle component analysis (PCA), hierarchical cluster analysis (HCA), K-nearest neighbor (KNN) and soft independent modeling of class analogy (SIMCA), to present a conceptually novel synthesis-identification integration strategy to construct a multidimensional differential sensor for nucleobase discrimination. Single-wavelength excitation fluorescence spectral data, single-wavelength emission fluorescence spectral data, and fluorescence Excitation-Emission Matrices (EEMs) of the CDs were respectively used as input data of the differential sensor. The results showed that the discrimination ability of the multidimensional differential sensor with EEM data set as input data was superior to those with single-wavelength excitation/emission fluorescence data set, suggesting that increasing the number of the data input could improve the discrimination power. Two supervised pattern recognition methods, namely KNN and SIMCA, correctly identified the five nucleobases with a classification accuracy of 100%. The proposed synthesis-identification integration strategy together with a multidimensional array of experimental data holds great promise in the construction of differential sensors." @default.
- W2797970193 created "2018-04-24" @default.
- W2797970193 creator A5020320190 @default.
- W2797970193 creator A5023102363 @default.
- W2797970193 creator A5057551174 @default.
- W2797970193 creator A5066102428 @default.
- W2797970193 date "2018-08-01" @default.
- W2797970193 modified "2023-09-27" @default.
- W2797970193 title "Synthesis-identification integration: One-pot hydrothermal preparation of fluorescent nitrogen-doped carbon nanodots for differentiating nucleobases with the aid of multivariate chemometrics analysis" @default.
- W2797970193 cites W1923474950 @default.
- W2797970193 cites W1963702892 @default.
- W2797970193 cites W1975038854 @default.
- W2797970193 cites W1986410538 @default.
- W2797970193 cites W1991845708 @default.
- W2797970193 cites W1992330196 @default.
- W2797970193 cites W1992501067 @default.
- W2797970193 cites W2006985186 @default.
- W2797970193 cites W2008721938 @default.
- W2797970193 cites W2013518031 @default.
- W2797970193 cites W2032674242 @default.
- W2797970193 cites W2032756919 @default.
- W2797970193 cites W2036682406 @default.
- W2797970193 cites W2037017264 @default.
- W2797970193 cites W2037509330 @default.
- W2797970193 cites W2039908040 @default.
- W2797970193 cites W2047787252 @default.
- W2797970193 cites W2047816702 @default.
- W2797970193 cites W2052480089 @default.
- W2797970193 cites W2054309228 @default.
- W2797970193 cites W2061023951 @default.
- W2797970193 cites W2074984060 @default.
- W2797970193 cites W2080265937 @default.
- W2797970193 cites W2088726673 @default.
- W2797970193 cites W2089222736 @default.
- W2797970193 cites W2092911960 @default.
- W2797970193 cites W2125764238 @default.
- W2797970193 cites W2133440845 @default.
- W2797970193 cites W2134664446 @default.
- W2797970193 cites W2144391591 @default.
- W2797970193 cites W2152496331 @default.
- W2797970193 cites W2160718460 @default.
- W2797970193 cites W2165912867 @default.
- W2797970193 cites W2166949499 @default.
- W2797970193 cites W2265522907 @default.
- W2797970193 cites W2294465942 @default.
- W2797970193 cites W2312725400 @default.
- W2797970193 cites W2327867629 @default.
- W2797970193 cites W2523141299 @default.
- W2797970193 cites W840559675 @default.
- W2797970193 cites W88031792 @default.
- W2797970193 doi "https://doi.org/10.1016/j.talanta.2018.04.019" @default.
- W2797970193 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29759232" @default.
- W2797970193 hasPublicationYear "2018" @default.
- W2797970193 type Work @default.
- W2797970193 sameAs 2797970193 @default.
- W2797970193 citedByCount "9" @default.
- W2797970193 countsByYear W27979701932018 @default.
- W2797970193 countsByYear W27979701932019 @default.
- W2797970193 countsByYear W27979701932020 @default.
- W2797970193 countsByYear W27979701932021 @default.
- W2797970193 countsByYear W27979701932023 @default.
- W2797970193 crossrefType "journal-article" @default.
- W2797970193 hasAuthorship W2797970193A5020320190 @default.
- W2797970193 hasAuthorship W2797970193A5023102363 @default.
- W2797970193 hasAuthorship W2797970193A5057551174 @default.
- W2797970193 hasAuthorship W2797970193A5066102428 @default.
- W2797970193 hasConcept C10390740 @default.
- W2797970193 hasConcept C113196181 @default.
- W2797970193 hasConcept C120665830 @default.
- W2797970193 hasConcept C121332964 @default.
- W2797970193 hasConcept C147789679 @default.
- W2797970193 hasConcept C151304367 @default.
- W2797970193 hasConcept C17525397 @default.
- W2797970193 hasConcept C185592680 @default.
- W2797970193 hasConcept C186060115 @default.
- W2797970193 hasConcept C2777869211 @default.
- W2797970193 hasConcept C2779525745 @default.
- W2797970193 hasConcept C43617362 @default.
- W2797970193 hasConcept C52859227 @default.
- W2797970193 hasConcept C552990157 @default.
- W2797970193 hasConcept C55493867 @default.
- W2797970193 hasConcept C61234307 @default.
- W2797970193 hasConcept C86803240 @default.
- W2797970193 hasConcept C91881484 @default.
- W2797970193 hasConceptScore W2797970193C10390740 @default.
- W2797970193 hasConceptScore W2797970193C113196181 @default.
- W2797970193 hasConceptScore W2797970193C120665830 @default.
- W2797970193 hasConceptScore W2797970193C121332964 @default.
- W2797970193 hasConceptScore W2797970193C147789679 @default.
- W2797970193 hasConceptScore W2797970193C151304367 @default.
- W2797970193 hasConceptScore W2797970193C17525397 @default.
- W2797970193 hasConceptScore W2797970193C185592680 @default.
- W2797970193 hasConceptScore W2797970193C186060115 @default.
- W2797970193 hasConceptScore W2797970193C2777869211 @default.
- W2797970193 hasConceptScore W2797970193C2779525745 @default.
- W2797970193 hasConceptScore W2797970193C43617362 @default.
- W2797970193 hasConceptScore W2797970193C52859227 @default.
- W2797970193 hasConceptScore W2797970193C552990157 @default.