Matches in SemOpenAlex for { <https://semopenalex.org/work/W2798014773> ?p ?o ?g. }
- W2798014773 endingPage "1129" @default.
- W2798014773 startingPage "1116" @default.
- W2798014773 abstract "In this paper, a novel approach to encode lenslet (LL) images is proposed. The method departs from traditional block-based coding structures and employs a hexagonal-shaped pixel cluster, called macro-pixel, as an elementary coding unit. A novel prediction mode based on dictionary learning is proposed, whereby macro-pixels are represented by a sparse linear combination of atoms from a generic dictionary. Additionally, an optimized linear prediction mode and a directional prediction mode specifically designed for macro-pixels are proposed. Rate-distortion optimization is utilized to select the best intra prediction mode for each macro-pixel. Experimental results on the light field image data set show that the proposed coding system outperforms HEVC and the state-of-the-art in LL image coding with an average peak signal to noise ratio gain of 3.33 and 1.41 dB, respectively, and with rate savings of 67.13% and 34.30%, respectively." @default.
- W2798014773 created "2018-04-24" @default.
- W2798014773 creator A5051856393 @default.
- W2798014773 creator A5058747795 @default.
- W2798014773 creator A5060196436 @default.
- W2798014773 creator A5078420371 @default.
- W2798014773 creator A5085245110 @default.
- W2798014773 creator A5088598176 @default.
- W2798014773 date "2019-04-01" @default.
- W2798014773 modified "2023-10-02" @default.
- W2798014773 title "Dictionary Learning-Based, Directional, and Optimized Prediction for Lenslet Image Coding" @default.
- W2798014773 cites W1977556410 @default.
- W2798014773 cites W1988519517 @default.
- W2798014773 cites W2028031899 @default.
- W2798014773 cites W2030712014 @default.
- W2798014773 cites W2043408784 @default.
- W2798014773 cites W2051768473 @default.
- W2798014773 cites W2063366997 @default.
- W2798014773 cites W2067122986 @default.
- W2798014773 cites W2103211484 @default.
- W2798014773 cites W2104147251 @default.
- W2798014773 cites W2111044596 @default.
- W2798014773 cites W2115030355 @default.
- W2798014773 cites W2128268941 @default.
- W2798014773 cites W2133515844 @default.
- W2798014773 cites W2140050933 @default.
- W2798014773 cites W2140196014 @default.
- W2798014773 cites W2143050242 @default.
- W2798014773 cites W2145889472 @default.
- W2798014773 cites W2146395539 @default.
- W2798014773 cites W2150593711 @default.
- W2798014773 cites W2153903029 @default.
- W2798014773 cites W2158863190 @default.
- W2798014773 cites W2159260234 @default.
- W2798014773 cites W2163142644 @default.
- W2798014773 cites W2163398148 @default.
- W2798014773 cites W2170000955 @default.
- W2798014773 cites W2269460599 @default.
- W2798014773 cites W2273553327 @default.
- W2798014773 cites W2344700153 @default.
- W2798014773 cites W2507581639 @default.
- W2798014773 cites W2525683018 @default.
- W2798014773 cites W2531327760 @default.
- W2798014773 cites W2611215319 @default.
- W2798014773 cites W2792186698 @default.
- W2798014773 cites W4230548574 @default.
- W2798014773 cites W4238005791 @default.
- W2798014773 cites W993862674 @default.
- W2798014773 doi "https://doi.org/10.1109/tcsvt.2018.2826052" @default.
- W2798014773 hasPublicationYear "2019" @default.
- W2798014773 type Work @default.
- W2798014773 sameAs 2798014773 @default.
- W2798014773 citedByCount "12" @default.
- W2798014773 countsByYear W27980147732020 @default.
- W2798014773 countsByYear W27980147732021 @default.
- W2798014773 countsByYear W27980147732022 @default.
- W2798014773 countsByYear W27980147732023 @default.
- W2798014773 crossrefType "journal-article" @default.
- W2798014773 hasAuthorship W2798014773A5051856393 @default.
- W2798014773 hasAuthorship W2798014773A5058747795 @default.
- W2798014773 hasAuthorship W2798014773A5060196436 @default.
- W2798014773 hasAuthorship W2798014773A5078420371 @default.
- W2798014773 hasAuthorship W2798014773A5085245110 @default.
- W2798014773 hasAuthorship W2798014773A5088598176 @default.
- W2798014773 hasConcept C104317684 @default.
- W2798014773 hasConcept C105795698 @default.
- W2798014773 hasConcept C11413529 @default.
- W2798014773 hasConcept C153180895 @default.
- W2798014773 hasConcept C154945302 @default.
- W2798014773 hasConcept C160633673 @default.
- W2798014773 hasConcept C166955791 @default.
- W2798014773 hasConcept C179518139 @default.
- W2798014773 hasConcept C185592680 @default.
- W2798014773 hasConcept C199360897 @default.
- W2798014773 hasConcept C31972630 @default.
- W2798014773 hasConcept C33923547 @default.
- W2798014773 hasConcept C41008148 @default.
- W2798014773 hasConcept C55493867 @default.
- W2798014773 hasConcept C66746571 @default.
- W2798014773 hasConceptScore W2798014773C104317684 @default.
- W2798014773 hasConceptScore W2798014773C105795698 @default.
- W2798014773 hasConceptScore W2798014773C11413529 @default.
- W2798014773 hasConceptScore W2798014773C153180895 @default.
- W2798014773 hasConceptScore W2798014773C154945302 @default.
- W2798014773 hasConceptScore W2798014773C160633673 @default.
- W2798014773 hasConceptScore W2798014773C166955791 @default.
- W2798014773 hasConceptScore W2798014773C179518139 @default.
- W2798014773 hasConceptScore W2798014773C185592680 @default.
- W2798014773 hasConceptScore W2798014773C199360897 @default.
- W2798014773 hasConceptScore W2798014773C31972630 @default.
- W2798014773 hasConceptScore W2798014773C33923547 @default.
- W2798014773 hasConceptScore W2798014773C41008148 @default.
- W2798014773 hasConceptScore W2798014773C55493867 @default.
- W2798014773 hasConceptScore W2798014773C66746571 @default.
- W2798014773 hasIssue "4" @default.
- W2798014773 hasLocation W27980147731 @default.
- W2798014773 hasOpenAccess W2798014773 @default.
- W2798014773 hasPrimaryLocation W27980147731 @default.