Matches in SemOpenAlex for { <https://semopenalex.org/work/W2798062783> ?p ?o ?g. }
- W2798062783 endingPage "455" @default.
- W2798062783 startingPage "446" @default.
- W2798062783 abstract "Clipping, or saturation, is a common nonlinear distortion in signal processing. Recently, declipping techniques have been proposed based on sparse decomposition of the clipped signals on a fixed dictionary, with additional constraints on the amplitude of the clipped samples. Here we propose a dictionary learning approach, where the dictionary is directly learned from the clipped measurements. We propose a soft-consistency metric that minimizes the distance to a convex feasibility set, and takes into account our knowledge about the clipping process. We then propose a gradient descent-based dictionary learning algorithm that minimizes the proposed metric, and is thus consistent with the clipping measurement. Experiments show that the proposed algorithm outperforms other dictionary learning algorithms applied to clipped signals. We also show that learning the dictionary directly from the clipped signals outperforms consistent sparse coding with a fixed dictionary." @default.
- W2798062783 created "2018-04-24" @default.
- W2798062783 creator A5001483226 @default.
- W2798062783 creator A5037691180 @default.
- W2798062783 creator A5066967599 @default.
- W2798062783 creator A5084833074 @default.
- W2798062783 date "2018-01-01" @default.
- W2798062783 modified "2023-09-26" @default.
- W2798062783 title "Consistent Dictionary Learning for Signal Declipping" @default.
- W2798062783 cites W1979384670 @default.
- W2798062783 cites W1982632325 @default.
- W2798062783 cites W2000125728 @default.
- W2798062783 cites W2006772625 @default.
- W2798062783 cites W2029362727 @default.
- W2798062783 cites W2035826116 @default.
- W2798062783 cites W2097479740 @default.
- W2798062783 cites W2112390905 @default.
- W2798062783 cites W2112464782 @default.
- W2798062783 cites W2114122776 @default.
- W2798062783 cites W2115429828 @default.
- W2798062783 cites W2116775748 @default.
- W2798062783 cites W2153663612 @default.
- W2798062783 cites W2160719355 @default.
- W2798062783 cites W2222562092 @default.
- W2798062783 cites W2296153915 @default.
- W2798062783 cites W2404728592 @default.
- W2798062783 cites W2963322354 @default.
- W2798062783 cites W4206310440 @default.
- W2798062783 cites W4250589301 @default.
- W2798062783 cites W4292363360 @default.
- W2798062783 doi "https://doi.org/10.1007/978-3-319-93764-9_41" @default.
- W2798062783 hasPublicationYear "2018" @default.
- W2798062783 type Work @default.
- W2798062783 sameAs 2798062783 @default.
- W2798062783 citedByCount "9" @default.
- W2798062783 countsByYear W27980627832018 @default.
- W2798062783 countsByYear W27980627832019 @default.
- W2798062783 countsByYear W27980627832020 @default.
- W2798062783 countsByYear W27980627832021 @default.
- W2798062783 crossrefType "book-chapter" @default.
- W2798062783 hasAuthorship W2798062783A5001483226 @default.
- W2798062783 hasAuthorship W2798062783A5037691180 @default.
- W2798062783 hasAuthorship W2798062783A5066967599 @default.
- W2798062783 hasAuthorship W2798062783A5084833074 @default.
- W2798062783 hasBestOaLocation W27980627832 @default.
- W2798062783 hasConcept C11413529 @default.
- W2798062783 hasConcept C124066611 @default.
- W2798062783 hasConcept C138885662 @default.
- W2798062783 hasConcept C153180895 @default.
- W2798062783 hasConcept C153258448 @default.
- W2798062783 hasConcept C154771677 @default.
- W2798062783 hasConcept C154945302 @default.
- W2798062783 hasConcept C162324750 @default.
- W2798062783 hasConcept C176217482 @default.
- W2798062783 hasConcept C177264268 @default.
- W2798062783 hasConcept C199360897 @default.
- W2798062783 hasConcept C21547014 @default.
- W2798062783 hasConcept C2776848632 @default.
- W2798062783 hasConcept C28490314 @default.
- W2798062783 hasConcept C2988886741 @default.
- W2798062783 hasConcept C41008148 @default.
- W2798062783 hasConcept C41895202 @default.
- W2798062783 hasConcept C50644808 @default.
- W2798062783 hasConcept C77637269 @default.
- W2798062783 hasConceptScore W2798062783C11413529 @default.
- W2798062783 hasConceptScore W2798062783C124066611 @default.
- W2798062783 hasConceptScore W2798062783C138885662 @default.
- W2798062783 hasConceptScore W2798062783C153180895 @default.
- W2798062783 hasConceptScore W2798062783C153258448 @default.
- W2798062783 hasConceptScore W2798062783C154771677 @default.
- W2798062783 hasConceptScore W2798062783C154945302 @default.
- W2798062783 hasConceptScore W2798062783C162324750 @default.
- W2798062783 hasConceptScore W2798062783C176217482 @default.
- W2798062783 hasConceptScore W2798062783C177264268 @default.
- W2798062783 hasConceptScore W2798062783C199360897 @default.
- W2798062783 hasConceptScore W2798062783C21547014 @default.
- W2798062783 hasConceptScore W2798062783C2776848632 @default.
- W2798062783 hasConceptScore W2798062783C28490314 @default.
- W2798062783 hasConceptScore W2798062783C2988886741 @default.
- W2798062783 hasConceptScore W2798062783C41008148 @default.
- W2798062783 hasConceptScore W2798062783C41895202 @default.
- W2798062783 hasConceptScore W2798062783C50644808 @default.
- W2798062783 hasConceptScore W2798062783C77637269 @default.
- W2798062783 hasLocation W27980627831 @default.
- W2798062783 hasLocation W27980627832 @default.
- W2798062783 hasOpenAccess W2798062783 @default.
- W2798062783 hasPrimaryLocation W27980627831 @default.
- W2798062783 hasRelatedWork W1914651075 @default.
- W2798062783 hasRelatedWork W2064227837 @default.
- W2798062783 hasRelatedWork W2102805523 @default.
- W2798062783 hasRelatedWork W2127233802 @default.
- W2798062783 hasRelatedWork W2157785665 @default.
- W2798062783 hasRelatedWork W22502857 @default.
- W2798062783 hasRelatedWork W2537515543 @default.
- W2798062783 hasRelatedWork W2798062783 @default.
- W2798062783 hasRelatedWork W2982682687 @default.
- W2798062783 hasRelatedWork W3002372064 @default.
- W2798062783 isParatext "false" @default.