Matches in SemOpenAlex for { <https://semopenalex.org/work/W2798097421> ?p ?o ?g. }
- W2798097421 endingPage "74" @default.
- W2798097421 startingPage "63" @default.
- W2798097421 abstract "We report on experimental evidence of the existence of a new self-sustaining low-temperature multistage warm diffusion flame, existing between the cool flame and hot flame, at atmospheric pressure in the counterflow geometry. The structure of multistage warm diffusion flames was examined by using thermometry, laser-induced fluorescence, and chemiluminescence measurements. It was found that the warm diffusion flame has a two-staged double flame structure, with a leading diffusion cool flame stage on the fuel side and a second intermediate stage on the oxidizer side, with strong heat release in the second stage that can be comparable to that of the first stage. The results demonstrate that the spatially-distinct multistage character is due to the low-temperature fuel reactivity that allows for the production of reactive intermediates in a leading cool flame. These intermediates are then oxidized, on the oxidizer side, in a second stage via intermediate-temperature chemistry. In the case of dibutyl ether, the low-temperature peroxy branching pathway supports the first cool flame oxidation stage and produces intermediates such as alkyl and carbonyl radicals. The alkyl and carbonyl radicals then react with the hydroperoxyl radical and molecular oxygen to form the second oxidation stage. A detailed analysis revealed that ozone addition in the oxidizer promotes the second stage oxidation by increasing both the radical pool population and the flame temperature, but does not fundamentally change the multistage flame structure. Furthermore, the analysis revealed that with the increase of fuel concentration, a single-stage cool flame can ignite to a warm flame or a hot flame. Moreover, a warm flame can extinguish into a cool flame or ignite to a hot flame when the fuel concentration is substantially reduced or increased, respectively. Finally, under certain conditions, a hot flame can extinguish directly into either a warm flame or a cool flame. Hence, the results suggest that the multistage warm flame can act as a critical bridge between cool flames and hot flames and that it is a fundamental burning mode characteristic of low-temperature non-premixed combustion. The multistage warm diffusion flame is particularly relevant to combustion in highly turbulent flow fields and in microgravity environments, owing to the possibility of long residence times." @default.
- W2798097421 created "2018-04-24" @default.
- W2798097421 creator A5074467905 @default.
- W2798097421 creator A5081250081 @default.
- W2798097421 creator A5091516188 @default.
- W2798097421 date "2018-09-01" @default.
- W2798097421 modified "2023-10-15" @default.
- W2798097421 title "Low-temperature multistage warm diffusion flames" @default.
- W2798097421 cites W1963997373 @default.
- W2798097421 cites W1964321636 @default.
- W2798097421 cites W1974189763 @default.
- W2798097421 cites W1974338573 @default.
- W2798097421 cites W1988584082 @default.
- W2798097421 cites W1994422102 @default.
- W2798097421 cites W1995397859 @default.
- W2798097421 cites W1999837958 @default.
- W2798097421 cites W2007034438 @default.
- W2798097421 cites W2014333331 @default.
- W2798097421 cites W2014397419 @default.
- W2798097421 cites W2018821940 @default.
- W2798097421 cites W2019411306 @default.
- W2798097421 cites W2023082517 @default.
- W2798097421 cites W2027634943 @default.
- W2798097421 cites W2031413182 @default.
- W2798097421 cites W2034158482 @default.
- W2798097421 cites W2036040246 @default.
- W2798097421 cites W2040466123 @default.
- W2798097421 cites W2042021222 @default.
- W2798097421 cites W2055009611 @default.
- W2798097421 cites W2057136468 @default.
- W2798097421 cites W2075885036 @default.
- W2798097421 cites W2077620621 @default.
- W2798097421 cites W2082694575 @default.
- W2798097421 cites W2084937361 @default.
- W2798097421 cites W2088425628 @default.
- W2798097421 cites W2092108322 @default.
- W2798097421 cites W2105835698 @default.
- W2798097421 cites W2121092916 @default.
- W2798097421 cites W2132270412 @default.
- W2798097421 cites W2225709517 @default.
- W2798097421 cites W2318478554 @default.
- W2798097421 cites W2444000582 @default.
- W2798097421 cites W2463523599 @default.
- W2798097421 cites W2464203857 @default.
- W2798097421 cites W2465184229 @default.
- W2798097421 cites W2497003082 @default.
- W2798097421 cites W2503059206 @default.
- W2798097421 cites W2519456826 @default.
- W2798097421 cites W2549217606 @default.
- W2798097421 cites W2552520388 @default.
- W2798097421 cites W2570315068 @default.
- W2798097421 cites W2584795361 @default.
- W2798097421 cites W2584964245 @default.
- W2798097421 cites W2593599667 @default.
- W2798097421 cites W2734836568 @default.
- W2798097421 cites W4253316471 @default.
- W2798097421 cites W626919202 @default.
- W2798097421 cites W995008412 @default.
- W2798097421 doi "https://doi.org/10.1016/j.combustflame.2018.03.013" @default.
- W2798097421 hasPublicationYear "2018" @default.
- W2798097421 type Work @default.
- W2798097421 sameAs 2798097421 @default.
- W2798097421 citedByCount "26" @default.
- W2798097421 countsByYear W27980974212019 @default.
- W2798097421 countsByYear W27980974212020 @default.
- W2798097421 countsByYear W27980974212021 @default.
- W2798097421 countsByYear W27980974212022 @default.
- W2798097421 countsByYear W27980974212023 @default.
- W2798097421 crossrefType "journal-article" @default.
- W2798097421 hasAuthorship W2798097421A5074467905 @default.
- W2798097421 hasAuthorship W2798097421A5081250081 @default.
- W2798097421 hasAuthorship W2798097421A5091516188 @default.
- W2798097421 hasBestOaLocation W27980974211 @default.
- W2798097421 hasConcept C105923489 @default.
- W2798097421 hasConcept C113196181 @default.
- W2798097421 hasConcept C121332964 @default.
- W2798097421 hasConcept C129474609 @default.
- W2798097421 hasConcept C139066938 @default.
- W2798097421 hasConcept C178790620 @default.
- W2798097421 hasConcept C185592680 @default.
- W2798097421 hasConcept C197554733 @default.
- W2798097421 hasConcept C206175624 @default.
- W2798097421 hasConcept C2776722999 @default.
- W2798097421 hasConcept C2778269189 @default.
- W2798097421 hasConcept C540031477 @default.
- W2798097421 hasConcept C6506403 @default.
- W2798097421 hasConcept C69357855 @default.
- W2798097421 hasConcept C75473681 @default.
- W2798097421 hasConcept C83104080 @default.
- W2798097421 hasConcept C97355855 @default.
- W2798097421 hasConceptScore W2798097421C105923489 @default.
- W2798097421 hasConceptScore W2798097421C113196181 @default.
- W2798097421 hasConceptScore W2798097421C121332964 @default.
- W2798097421 hasConceptScore W2798097421C129474609 @default.
- W2798097421 hasConceptScore W2798097421C139066938 @default.
- W2798097421 hasConceptScore W2798097421C178790620 @default.
- W2798097421 hasConceptScore W2798097421C185592680 @default.
- W2798097421 hasConceptScore W2798097421C197554733 @default.