Matches in SemOpenAlex for { <https://semopenalex.org/work/W2798264189> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2798264189 endingPage "50" @default.
- W2798264189 startingPage "40" @default.
- W2798264189 abstract "Recently, there has been an everyday increase in the number of sources generating univariate uncertain data. A few efficient algorithms have been proposed for maximal frequent patterns mining from univariate uncertain data statically. However, many real-life applications generate univariate uncertain databases incrementally. Obviously, it is very costly to mine maximal frequent patterns from these incremental databases using current algorithms because they must be re-run from scratch. In this paper, an incremental algorithm called IMU2P-Miner is proposed for incremental maximal frequent pattern mining from univariate uncertain data. Instead of current algorithms such as MU2P-Miner, in which the tree must be reconstructed when new data are inserted, our proposed algorithm does not need tree reconstruction, and only a path must be updated or added. To do this, an efficient tree structure, which uses a local array to keep the updates, is introduced. Therefore, it is expected that the IMU2P-Miner algorithm can be faster than current algorithms for maximal frequent patterns mining from incremental univariate uncertain databases. A comprehensive experimental evaluation is conducted by several databases to compare the performance of the proposed algorithm against the MU2P-Miner algorithm. The experimental results show that the IMU2P-Miner algorithm mines maximal frequent patterns faster than the MU2P-Miner for incremental databases." @default.
- W2798264189 created "2018-04-24" @default.
- W2798264189 creator A5027415596 @default.
- W2798264189 creator A5086991184 @default.
- W2798264189 date "2018-07-01" @default.
- W2798264189 modified "2023-10-16" @default.
- W2798264189 title "Incremental mining maximal frequent patterns from univariate uncertain data" @default.
- W2798264189 cites W1509210027 @default.
- W2798264189 cites W1883504507 @default.
- W2798264189 cites W1982577505 @default.
- W2798264189 cites W1994891592 @default.
- W2798264189 cites W2001775555 @default.
- W2798264189 cites W2056646133 @default.
- W2798264189 cites W2122475441 @default.
- W2798264189 cites W2415111748 @default.
- W2798264189 cites W64266175 @default.
- W2798264189 doi "https://doi.org/10.1016/j.knosys.2018.04.001" @default.
- W2798264189 hasPublicationYear "2018" @default.
- W2798264189 type Work @default.
- W2798264189 sameAs 2798264189 @default.
- W2798264189 citedByCount "22" @default.
- W2798264189 countsByYear W27982641892019 @default.
- W2798264189 countsByYear W27982641892020 @default.
- W2798264189 countsByYear W27982641892021 @default.
- W2798264189 countsByYear W27982641892022 @default.
- W2798264189 countsByYear W27982641892023 @default.
- W2798264189 crossrefType "journal-article" @default.
- W2798264189 hasAuthorship W2798264189A5027415596 @default.
- W2798264189 hasAuthorship W2798264189A5086991184 @default.
- W2798264189 hasConcept C113174947 @default.
- W2798264189 hasConcept C11413529 @default.
- W2798264189 hasConcept C119857082 @default.
- W2798264189 hasConcept C124101348 @default.
- W2798264189 hasConcept C134306372 @default.
- W2798264189 hasConcept C161584116 @default.
- W2798264189 hasConcept C199163554 @default.
- W2798264189 hasConcept C33923547 @default.
- W2798264189 hasConcept C41008148 @default.
- W2798264189 hasConcept C89198739 @default.
- W2798264189 hasConceptScore W2798264189C113174947 @default.
- W2798264189 hasConceptScore W2798264189C11413529 @default.
- W2798264189 hasConceptScore W2798264189C119857082 @default.
- W2798264189 hasConceptScore W2798264189C124101348 @default.
- W2798264189 hasConceptScore W2798264189C134306372 @default.
- W2798264189 hasConceptScore W2798264189C161584116 @default.
- W2798264189 hasConceptScore W2798264189C199163554 @default.
- W2798264189 hasConceptScore W2798264189C33923547 @default.
- W2798264189 hasConceptScore W2798264189C41008148 @default.
- W2798264189 hasConceptScore W2798264189C89198739 @default.
- W2798264189 hasLocation W27982641891 @default.
- W2798264189 hasOpenAccess W2798264189 @default.
- W2798264189 hasPrimaryLocation W27982641891 @default.
- W2798264189 hasRelatedWork W2077342392 @default.
- W2798264189 hasRelatedWork W2128573033 @default.
- W2798264189 hasRelatedWork W2141203123 @default.
- W2798264189 hasRelatedWork W2150821526 @default.
- W2798264189 hasRelatedWork W2565517845 @default.
- W2798264189 hasRelatedWork W257053926 @default.
- W2798264189 hasRelatedWork W2738041616 @default.
- W2798264189 hasRelatedWork W2789870477 @default.
- W2798264189 hasRelatedWork W2798264189 @default.
- W2798264189 hasRelatedWork W4285200779 @default.
- W2798264189 hasVolume "152" @default.
- W2798264189 isParatext "false" @default.
- W2798264189 isRetracted "false" @default.
- W2798264189 magId "2798264189" @default.
- W2798264189 workType "article" @default.