Matches in SemOpenAlex for { <https://semopenalex.org/work/W2798273102> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2798273102 abstract "We propose the use of deep neural networks (DNN) for solving the problem of inferring the position and relevant properties of lanes of urban roads with poor or absent horizontal signalization, in order to allow the operation of autonomous cars in such situations. We take a segmentation approach to the problem and use the Efficient Neural Network (ENet) DNN for segmenting LiDAR remission grid maps into road maps. We represent road maps using what we called road grid maps. Road grid maps are square matrixes and each element of these matrixes represents a small square region of real-world space. The value of each element is a code associated with the semantics of the road map. Our road grid maps contain all information about the roads' lanes required for building the Road Definition Data Files (RDDFs) that are necessary for the operation of our autonomous car, IARA (Intelligent Autonomous Robotic Automobile). We have built a dataset of tens of kilometers of manually marked road lanes and used part of it to train ENet to segment road grid maps from remission grid maps. After being trained, ENet achieved an average segmentation accuracy of 83.7%. We have tested the use of inferred road grid maps in the real world using IARA on a stretch of 3.7 km of urban roads and it has shown performance equivalent to that of the previous IARA's subsystem that uses a manually generated RDDF." @default.
- W2798273102 created "2018-05-07" @default.
- W2798273102 creator A5013840028 @default.
- W2798273102 creator A5028808604 @default.
- W2798273102 creator A5029154156 @default.
- W2798273102 creator A5035595217 @default.
- W2798273102 creator A5037893575 @default.
- W2798273102 creator A5048196131 @default.
- W2798273102 creator A5056260430 @default.
- W2798273102 date "2018-04-27" @default.
- W2798273102 modified "2023-09-26" @default.
- W2798273102 title "Mapping Road Lanes Using Laser Remission and Deep Neural Networks" @default.
- W2798273102 cites W1981799318 @default.
- W2798273102 cites W2068918247 @default.
- W2798273102 hasPublicationYear "2018" @default.
- W2798273102 type Work @default.
- W2798273102 sameAs 2798273102 @default.
- W2798273102 citedByCount "0" @default.
- W2798273102 crossrefType "posted-content" @default.
- W2798273102 hasAuthorship W2798273102A5013840028 @default.
- W2798273102 hasAuthorship W2798273102A5028808604 @default.
- W2798273102 hasAuthorship W2798273102A5029154156 @default.
- W2798273102 hasAuthorship W2798273102A5035595217 @default.
- W2798273102 hasAuthorship W2798273102A5037893575 @default.
- W2798273102 hasAuthorship W2798273102A5048196131 @default.
- W2798273102 hasAuthorship W2798273102A5056260430 @default.
- W2798273102 hasConcept C10138342 @default.
- W2798273102 hasConcept C124101348 @default.
- W2798273102 hasConcept C13280743 @default.
- W2798273102 hasConcept C154945302 @default.
- W2798273102 hasConcept C156172958 @default.
- W2798273102 hasConcept C162324750 @default.
- W2798273102 hasConcept C187691185 @default.
- W2798273102 hasConcept C198082294 @default.
- W2798273102 hasConcept C19966478 @default.
- W2798273102 hasConcept C205649164 @default.
- W2798273102 hasConcept C31972630 @default.
- W2798273102 hasConcept C41008148 @default.
- W2798273102 hasConcept C50644808 @default.
- W2798273102 hasConcept C51399673 @default.
- W2798273102 hasConcept C58640448 @default.
- W2798273102 hasConcept C62649853 @default.
- W2798273102 hasConcept C89600930 @default.
- W2798273102 hasConcept C90509273 @default.
- W2798273102 hasConceptScore W2798273102C10138342 @default.
- W2798273102 hasConceptScore W2798273102C124101348 @default.
- W2798273102 hasConceptScore W2798273102C13280743 @default.
- W2798273102 hasConceptScore W2798273102C154945302 @default.
- W2798273102 hasConceptScore W2798273102C156172958 @default.
- W2798273102 hasConceptScore W2798273102C162324750 @default.
- W2798273102 hasConceptScore W2798273102C187691185 @default.
- W2798273102 hasConceptScore W2798273102C198082294 @default.
- W2798273102 hasConceptScore W2798273102C19966478 @default.
- W2798273102 hasConceptScore W2798273102C205649164 @default.
- W2798273102 hasConceptScore W2798273102C31972630 @default.
- W2798273102 hasConceptScore W2798273102C41008148 @default.
- W2798273102 hasConceptScore W2798273102C50644808 @default.
- W2798273102 hasConceptScore W2798273102C51399673 @default.
- W2798273102 hasConceptScore W2798273102C58640448 @default.
- W2798273102 hasConceptScore W2798273102C62649853 @default.
- W2798273102 hasConceptScore W2798273102C89600930 @default.
- W2798273102 hasConceptScore W2798273102C90509273 @default.
- W2798273102 hasLocation W27982731021 @default.
- W2798273102 hasOpenAccess W2798273102 @default.
- W2798273102 hasPrimaryLocation W27982731021 @default.
- W2798273102 hasRelatedWork W2149409607 @default.
- W2798273102 hasRelatedWork W2293579146 @default.
- W2798273102 hasRelatedWork W2382861632 @default.
- W2798273102 hasRelatedWork W2538118716 @default.
- W2798273102 hasRelatedWork W2895832001 @default.
- W2798273102 hasRelatedWork W2898887767 @default.
- W2798273102 hasRelatedWork W2918989099 @default.
- W2798273102 hasRelatedWork W2932934298 @default.
- W2798273102 hasRelatedWork W2940269419 @default.
- W2798273102 hasRelatedWork W2963926549 @default.
- W2798273102 hasRelatedWork W2969510143 @default.
- W2798273102 hasRelatedWork W2988288682 @default.
- W2798273102 hasRelatedWork W2988990098 @default.
- W2798273102 hasRelatedWork W3012272523 @default.
- W2798273102 hasRelatedWork W3122527586 @default.
- W2798273102 hasRelatedWork W3134470060 @default.
- W2798273102 hasRelatedWork W3190518009 @default.
- W2798273102 hasRelatedWork W3213067224 @default.
- W2798273102 hasRelatedWork W630181262 @default.
- W2798273102 hasRelatedWork W2959692515 @default.
- W2798273102 isParatext "false" @default.
- W2798273102 isRetracted "false" @default.
- W2798273102 magId "2798273102" @default.
- W2798273102 workType "article" @default.