Matches in SemOpenAlex for { <https://semopenalex.org/work/W2798490118> ?p ?o ?g. }
- W2798490118 abstract "The availability of affordable 3D full body reconstruction systems has given rise to free-viewpoint video (FVV) of human shapes. Most existing solutions produce temporally uncorrelated point clouds or meshes with unknown point/vertex correspondences. Individually compressing each frame is ineffective and still yields to ultra-large data sizes. We present an end-to-end deep learning scheme to establish dense shape correspondences and subsequently compress the data. Our approach uses sparse set of panoramic depth maps or PDMs, each emulating an inward-viewing concentric mosaics (CM) [45]. We then develop a learning-based technique to learn pixel-wise feature descriptors on PDMs. The results are fed into an autoencoder-based network for compression. Comprehensive experiments demonstrate our solution is robust and effective on both public and our newly captured datasets." @default.
- W2798490118 created "2018-05-07" @default.
- W2798490118 creator A5015086148 @default.
- W2798490118 creator A5041389086 @default.
- W2798490118 creator A5068376674 @default.
- W2798490118 creator A5085836060 @default.
- W2798490118 date "2018-06-01" @default.
- W2798490118 modified "2023-09-22" @default.
- W2798490118 title "4D Human Body Correspondences from Panoramic Depth Maps" @default.
- W2798490118 cites W1601479830 @default.
- W2798490118 cites W1938204631 @default.
- W2798490118 cites W1939319527 @default.
- W2798490118 cites W1977213563 @default.
- W2798490118 cites W1982465050 @default.
- W2798490118 cites W1985907520 @default.
- W2798490118 cites W1986454013 @default.
- W2798490118 cites W1989191365 @default.
- W2798490118 cites W2008073424 @default.
- W2798490118 cites W2013442102 @default.
- W2798490118 cites W2013741112 @default.
- W2798490118 cites W2017910919 @default.
- W2798490118 cites W2037437642 @default.
- W2798490118 cites W2040436296 @default.
- W2798490118 cites W2044618760 @default.
- W2798490118 cites W2065699474 @default.
- W2798490118 cites W2066472867 @default.
- W2798490118 cites W2073431710 @default.
- W2798490118 cites W2078380962 @default.
- W2798490118 cites W2080675497 @default.
- W2798490118 cites W2086816767 @default.
- W2798490118 cites W2091685917 @default.
- W2798490118 cites W2097797924 @default.
- W2798490118 cites W2098578926 @default.
- W2798490118 cites W2103359096 @default.
- W2798490118 cites W2105106232 @default.
- W2798490118 cites W2108891011 @default.
- W2798490118 cites W2111957157 @default.
- W2798490118 cites W2118084436 @default.
- W2798490118 cites W2122578066 @default.
- W2798490118 cites W2139989075 @default.
- W2798490118 cites W2141012393 @default.
- W2798490118 cites W2146527621 @default.
- W2798490118 cites W2155641907 @default.
- W2798490118 cites W2208936087 @default.
- W2798490118 cites W2215643317 @default.
- W2798490118 cites W2307770531 @default.
- W2798490118 cites W2397662263 @default.
- W2798490118 cites W2532511219 @default.
- W2798490118 cites W2746892480 @default.
- W2798490118 cites W2962865163 @default.
- W2798490118 cites W2963425704 @default.
- W2798490118 cites W2963613396 @default.
- W2798490118 cites W3141003708 @default.
- W2798490118 doi "https://doi.org/10.1109/cvpr.2018.00304" @default.
- W2798490118 hasPublicationYear "2018" @default.
- W2798490118 type Work @default.
- W2798490118 sameAs 2798490118 @default.
- W2798490118 citedByCount "1" @default.
- W2798490118 countsByYear W27984901182018 @default.
- W2798490118 crossrefType "proceedings-article" @default.
- W2798490118 hasAuthorship W2798490118A5015086148 @default.
- W2798490118 hasAuthorship W2798490118A5041389086 @default.
- W2798490118 hasAuthorship W2798490118A5068376674 @default.
- W2798490118 hasAuthorship W2798490118A5085836060 @default.
- W2798490118 hasBestOaLocation W27984901182 @default.
- W2798490118 hasConcept C101738243 @default.
- W2798490118 hasConcept C108583219 @default.
- W2798490118 hasConcept C121684516 @default.
- W2798490118 hasConcept C131979681 @default.
- W2798490118 hasConcept C132525143 @default.
- W2798490118 hasConcept C138885662 @default.
- W2798490118 hasConcept C153180895 @default.
- W2798490118 hasConcept C154945302 @default.
- W2798490118 hasConcept C160633673 @default.
- W2798490118 hasConcept C2524010 @default.
- W2798490118 hasConcept C2776401178 @default.
- W2798490118 hasConcept C28719098 @default.
- W2798490118 hasConcept C31487907 @default.
- W2798490118 hasConcept C31972630 @default.
- W2798490118 hasConcept C33923547 @default.
- W2798490118 hasConcept C41008148 @default.
- W2798490118 hasConcept C41895202 @default.
- W2798490118 hasConcept C80444323 @default.
- W2798490118 hasConcept C80899671 @default.
- W2798490118 hasConceptScore W2798490118C101738243 @default.
- W2798490118 hasConceptScore W2798490118C108583219 @default.
- W2798490118 hasConceptScore W2798490118C121684516 @default.
- W2798490118 hasConceptScore W2798490118C131979681 @default.
- W2798490118 hasConceptScore W2798490118C132525143 @default.
- W2798490118 hasConceptScore W2798490118C138885662 @default.
- W2798490118 hasConceptScore W2798490118C153180895 @default.
- W2798490118 hasConceptScore W2798490118C154945302 @default.
- W2798490118 hasConceptScore W2798490118C160633673 @default.
- W2798490118 hasConceptScore W2798490118C2524010 @default.
- W2798490118 hasConceptScore W2798490118C2776401178 @default.
- W2798490118 hasConceptScore W2798490118C28719098 @default.
- W2798490118 hasConceptScore W2798490118C31487907 @default.
- W2798490118 hasConceptScore W2798490118C31972630 @default.
- W2798490118 hasConceptScore W2798490118C33923547 @default.
- W2798490118 hasConceptScore W2798490118C41008148 @default.