Matches in SemOpenAlex for { <https://semopenalex.org/work/W2798491485> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2798491485 abstract "The trend of investment has moved towards open ended funds, which removes the burden of investment from investors and promise certain percentage of profit. An open-end fund is a specialized type of mutual fund through which an investor can invest at any time. This kind of funds buy and sell shares as per their Net Asset Value per unit (NAV per unit). The freedom of time for investment is a big plus for such funds. There is more vigilance/security required for open-end funds. Research tries to build prediction models based on publically available data of Asset Management Companies (AMCs) and predict the growth of funds based on the time series analysis. The data includes past ten years data of top 9 AMCs, which is pre-processed to build a model for prediction of price/value for both individual investors and AMCs. Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH) and Artificial Neural Network (ANN) are applied separately on the data to predict the NAV for next five months. GARCH model gave predictions with a very less Mean Square Error (MSE), outperforming ANN with a significant difference." @default.
- W2798491485 created "2018-05-07" @default.
- W2798491485 creator A5044527971 @default.
- W2798491485 creator A5079112508 @default.
- W2798491485 creator A5086471874 @default.
- W2798491485 creator A5089558372 @default.
- W2798491485 creator A5090158644 @default.
- W2798491485 date "2018-03-01" @default.
- W2798491485 modified "2023-10-16" @default.
- W2798491485 title "Comparison of garch model and artificial neural network for mutual fund's growth prediction" @default.
- W2798491485 cites W1508061413 @default.
- W2798491485 cites W2013583870 @default.
- W2798491485 cites W2088503829 @default.
- W2798491485 cites W2103997983 @default.
- W2798491485 cites W2122016003 @default.
- W2798491485 cites W2154273675 @default.
- W2798491485 cites W2162240164 @default.
- W2798491485 doi "https://doi.org/10.1109/icomet.2018.8346352" @default.
- W2798491485 hasPublicationYear "2018" @default.
- W2798491485 type Work @default.
- W2798491485 sameAs 2798491485 @default.
- W2798491485 citedByCount "4" @default.
- W2798491485 countsByYear W27984914852019 @default.
- W2798491485 countsByYear W27984914852020 @default.
- W2798491485 countsByYear W27984914852021 @default.
- W2798491485 crossrefType "proceedings-article" @default.
- W2798491485 hasAuthorship W2798491485A5044527971 @default.
- W2798491485 hasAuthorship W2798491485A5079112508 @default.
- W2798491485 hasAuthorship W2798491485A5086471874 @default.
- W2798491485 hasAuthorship W2798491485A5089558372 @default.
- W2798491485 hasAuthorship W2798491485A5090158644 @default.
- W2798491485 hasConcept C149782125 @default.
- W2798491485 hasConcept C154945302 @default.
- W2798491485 hasConcept C162324750 @default.
- W2798491485 hasConcept C23922673 @default.
- W2798491485 hasConcept C41008148 @default.
- W2798491485 hasConcept C50644808 @default.
- W2798491485 hasConcept C91602232 @default.
- W2798491485 hasConceptScore W2798491485C149782125 @default.
- W2798491485 hasConceptScore W2798491485C154945302 @default.
- W2798491485 hasConceptScore W2798491485C162324750 @default.
- W2798491485 hasConceptScore W2798491485C23922673 @default.
- W2798491485 hasConceptScore W2798491485C41008148 @default.
- W2798491485 hasConceptScore W2798491485C50644808 @default.
- W2798491485 hasConceptScore W2798491485C91602232 @default.
- W2798491485 hasLocation W27984914851 @default.
- W2798491485 hasOpenAccess W2798491485 @default.
- W2798491485 hasPrimaryLocation W27984914851 @default.
- W2798491485 hasRelatedWork W1532703442 @default.
- W2798491485 hasRelatedWork W1594573861 @default.
- W2798491485 hasRelatedWork W1608601224 @default.
- W2798491485 hasRelatedWork W2209232670 @default.
- W2798491485 hasRelatedWork W2372876907 @default.
- W2798491485 hasRelatedWork W2386387936 @default.
- W2798491485 hasRelatedWork W2407347784 @default.
- W2798491485 hasRelatedWork W3006627302 @default.
- W2798491485 hasRelatedWork W3107474891 @default.
- W2798491485 hasRelatedWork W3124905861 @default.
- W2798491485 isParatext "false" @default.
- W2798491485 isRetracted "false" @default.
- W2798491485 magId "2798491485" @default.
- W2798491485 workType "article" @default.