Matches in SemOpenAlex for { <https://semopenalex.org/work/W2798522065> ?p ?o ?g. }
- W2798522065 abstract "Sentiment Analysis has become a significant research matter for its probable in tapping into the vast amount of opinions generated by the people. Sentiment analysis deals with the computational conduct of opinion, sentiment within the text. People sometimes uses sarcastic text to express their opinion within the text. Sarcasm is a type of communication act in which the people write the contradictory of what they mean in reality. The intrinsically vague nature of sarcasm sometimes makes it hard to understand. Recognizing sarcasm can promote many sentiment analysis applications. Automatic detecting sarcasm is an approach for predicting sarcasm in text. In this paper we have tried to talk of the past work that has been done for detecting sarcasm in the text. This paper talk of approaches, features, datasets, and issues associated with sarcasm detection. Performance values associated with the past work also has been discussed. Various tables that present different dimension of past work like dataset used, features, approaches, performance values has also been discussed." @default.
- W2798522065 created "2018-05-07" @default.
- W2798522065 creator A5002538614 @default.
- W2798522065 creator A5012693469 @default.
- W2798522065 date "2017-08-01" @default.
- W2798522065 modified "2023-09-26" @default.
- W2798522065 title "Review of automatic sarcasm detection" @default.
- W2798522065 cites W1842080548 @default.
- W2798522065 cites W1968673961 @default.
- W2798522065 cites W1969186522 @default.
- W2798522065 cites W1969722661 @default.
- W2798522065 cites W2009578396 @default.
- W2798522065 cites W2018029294 @default.
- W2798522065 cites W2038634595 @default.
- W2798522065 cites W2038997150 @default.
- W2798522065 cites W2041400887 @default.
- W2798522065 cites W2053181647 @default.
- W2798522065 cites W2098437222 @default.
- W2798522065 cites W2099653665 @default.
- W2798522065 cites W2114661483 @default.
- W2798522065 cites W2115835990 @default.
- W2798522065 cites W2128415447 @default.
- W2798522065 cites W2142112646 @default.
- W2798522065 cites W2183500697 @default.
- W2798522065 cites W2223340824 @default.
- W2798522065 cites W2232443784 @default.
- W2798522065 cites W2250204095 @default.
- W2798522065 cites W2250480277 @default.
- W2798522065 cites W2250489604 @default.
- W2798522065 cites W2250710744 @default.
- W2798522065 cites W2251920663 @default.
- W2798522065 cites W2251958472 @default.
- W2798522065 cites W2251971374 @default.
- W2798522065 cites W2263859238 @default.
- W2798522065 cites W2268623141 @default.
- W2798522065 cites W2290577549 @default.
- W2798522065 cites W2293732954 @default.
- W2798522065 cites W2303137083 @default.
- W2798522065 cites W2405202646 @default.
- W2798522065 cites W2510141903 @default.
- W2798522065 cites W2510483258 @default.
- W2798522065 cites W2512470422 @default.
- W2798522065 cites W2512532697 @default.
- W2798522065 cites W2513973860 @default.
- W2798522065 cites W2544245958 @default.
- W2798522065 cites W2964126051 @default.
- W2798522065 cites W2964259493 @default.
- W2798522065 cites W3194034633 @default.
- W2798522065 cites W2252154346 @default.
- W2798522065 doi "https://doi.org/10.1109/tel-net.2017.8343562" @default.
- W2798522065 hasPublicationYear "2017" @default.
- W2798522065 type Work @default.
- W2798522065 sameAs 2798522065 @default.
- W2798522065 citedByCount "5" @default.
- W2798522065 countsByYear W27985220652019 @default.
- W2798522065 countsByYear W27985220652021 @default.
- W2798522065 countsByYear W27985220652022 @default.
- W2798522065 crossrefType "proceedings-article" @default.
- W2798522065 hasAuthorship W2798522065A5002538614 @default.
- W2798522065 hasAuthorship W2798522065A5012693469 @default.
- W2798522065 hasConcept C138885662 @default.
- W2798522065 hasConcept C154945302 @default.
- W2798522065 hasConcept C15744967 @default.
- W2798522065 hasConcept C202444582 @default.
- W2798522065 hasConcept C204321447 @default.
- W2798522065 hasConcept C2776207355 @default.
- W2798522065 hasConcept C2779975665 @default.
- W2798522065 hasConcept C33676613 @default.
- W2798522065 hasConcept C33923547 @default.
- W2798522065 hasConcept C41008148 @default.
- W2798522065 hasConcept C41895202 @default.
- W2798522065 hasConcept C66402592 @default.
- W2798522065 hasConceptScore W2798522065C138885662 @default.
- W2798522065 hasConceptScore W2798522065C154945302 @default.
- W2798522065 hasConceptScore W2798522065C15744967 @default.
- W2798522065 hasConceptScore W2798522065C202444582 @default.
- W2798522065 hasConceptScore W2798522065C204321447 @default.
- W2798522065 hasConceptScore W2798522065C2776207355 @default.
- W2798522065 hasConceptScore W2798522065C2779975665 @default.
- W2798522065 hasConceptScore W2798522065C33676613 @default.
- W2798522065 hasConceptScore W2798522065C33923547 @default.
- W2798522065 hasConceptScore W2798522065C41008148 @default.
- W2798522065 hasConceptScore W2798522065C41895202 @default.
- W2798522065 hasConceptScore W2798522065C66402592 @default.
- W2798522065 hasLocation W27985220651 @default.
- W2798522065 hasOpenAccess W2798522065 @default.
- W2798522065 hasPrimaryLocation W27985220651 @default.
- W2798522065 hasRelatedWork W2251958472 @default.
- W2798522065 hasRelatedWork W2755954406 @default.
- W2798522065 hasRelatedWork W2785815599 @default.
- W2798522065 hasRelatedWork W2790251875 @default.
- W2798522065 hasRelatedWork W2809496794 @default.
- W2798522065 hasRelatedWork W2906720631 @default.
- W2798522065 hasRelatedWork W2908196369 @default.
- W2798522065 hasRelatedWork W2947799827 @default.
- W2798522065 hasRelatedWork W2951678842 @default.
- W2798522065 hasRelatedWork W3000333714 @default.
- W2798522065 hasRelatedWork W3007020413 @default.
- W2798522065 hasRelatedWork W3013435255 @default.
- W2798522065 hasRelatedWork W3018024369 @default.