Matches in SemOpenAlex for { <https://semopenalex.org/work/W2798553619> ?p ?o ?g. }
- W2798553619 abstract "Facial expression recognition (FER) is a challenging task due to different expressions under arbitrary poses. Most conventional approaches either perform face frontalization on a non-frontal facial image or learn separate classifiers for each pose. Different from existing methods, in this paper, we propose an end-to-end deep learning model by exploiting different poses and expressions jointly for simultaneous facial image synthesis and pose-invariant facial expression recognition. The proposed model is based on generative adversarial network (GAN) and enjoys several merits. First, the encoder-decoder structure of the generator can learn a generative and discriminative identity representation for face images. Second, the identity representation is explicitly disentangled from both expression and pose variations through the expression and pose codes. Third, our model can automatically generate face images with different expressions under arbitrary poses to enlarge and enrich the training set for FER. Quantitative and qualitative evaluations on both controlled and in-the-wild datasets demonstrate that the proposed algorithm performs favorably against state-of-the-art methods." @default.
- W2798553619 created "2018-05-07" @default.
- W2798553619 creator A5022636178 @default.
- W2798553619 creator A5024417199 @default.
- W2798553619 creator A5055213066 @default.
- W2798553619 creator A5068470372 @default.
- W2798553619 date "2018-06-01" @default.
- W2798553619 modified "2023-10-15" @default.
- W2798553619 title "Joint Pose and Expression Modeling for Facial Expression Recognition" @default.
- W2798553619 cites W1974210421 @default.
- W2798553619 cites W1976512378 @default.
- W2798553619 cites W1986803802 @default.
- W2798553619 cites W2003823024 @default.
- W2798553619 cites W2068640973 @default.
- W2798553619 cites W2071207147 @default.
- W2798553619 cites W2083021723 @default.
- W2798553619 cites W2102605133 @default.
- W2798553619 cites W2104563967 @default.
- W2798553619 cites W2117539524 @default.
- W2798553619 cites W2126234799 @default.
- W2798553619 cites W2138206939 @default.
- W2798553619 cites W2147097131 @default.
- W2798553619 cites W2156503193 @default.
- W2798553619 cites W2195207531 @default.
- W2798553619 cites W2217426128 @default.
- W2798553619 cites W2326887180 @default.
- W2798553619 cites W2345305417 @default.
- W2798553619 cites W2436394355 @default.
- W2798553619 cites W2469434562 @default.
- W2798553619 cites W2487852963 @default.
- W2798553619 cites W2583574148 @default.
- W2798553619 cites W2584009249 @default.
- W2798553619 cites W2592232824 @default.
- W2798553619 cites W2600389231 @default.
- W2798553619 cites W2623550831 @default.
- W2798553619 cites W2625219738 @default.
- W2798553619 cites W2737047298 @default.
- W2798553619 cites W2737644856 @default.
- W2798553619 cites W2741156154 @default.
- W2798553619 cites W2744091666 @default.
- W2798553619 cites W2912990735 @default.
- W2798553619 cites W2962793481 @default.
- W2798553619 cites W2971794874 @default.
- W2798553619 cites W9976222 @default.
- W2798553619 doi "https://doi.org/10.1109/cvpr.2018.00354" @default.
- W2798553619 hasPublicationYear "2018" @default.
- W2798553619 type Work @default.
- W2798553619 sameAs 2798553619 @default.
- W2798553619 citedByCount "175" @default.
- W2798553619 countsByYear W27985536192018 @default.
- W2798553619 countsByYear W27985536192019 @default.
- W2798553619 countsByYear W27985536192020 @default.
- W2798553619 countsByYear W27985536192021 @default.
- W2798553619 countsByYear W27985536192022 @default.
- W2798553619 countsByYear W27985536192023 @default.
- W2798553619 crossrefType "proceedings-article" @default.
- W2798553619 hasAuthorship W2798553619A5022636178 @default.
- W2798553619 hasAuthorship W2798553619A5024417199 @default.
- W2798553619 hasAuthorship W2798553619A5055213066 @default.
- W2798553619 hasAuthorship W2798553619A5068470372 @default.
- W2798553619 hasConcept C111919701 @default.
- W2798553619 hasConcept C115961682 @default.
- W2798553619 hasConcept C118505674 @default.
- W2798553619 hasConcept C121332964 @default.
- W2798553619 hasConcept C144024400 @default.
- W2798553619 hasConcept C153180895 @default.
- W2798553619 hasConcept C154945302 @default.
- W2798553619 hasConcept C163258240 @default.
- W2798553619 hasConcept C167966045 @default.
- W2798553619 hasConcept C17744445 @default.
- W2798553619 hasConcept C190470478 @default.
- W2798553619 hasConcept C195704467 @default.
- W2798553619 hasConcept C199360897 @default.
- W2798553619 hasConcept C199539241 @default.
- W2798553619 hasConcept C2776359362 @default.
- W2798553619 hasConcept C2779304628 @default.
- W2798553619 hasConcept C2780992000 @default.
- W2798553619 hasConcept C31510193 @default.
- W2798553619 hasConcept C31972630 @default.
- W2798553619 hasConcept C33923547 @default.
- W2798553619 hasConcept C36289849 @default.
- W2798553619 hasConcept C37914503 @default.
- W2798553619 hasConcept C39890363 @default.
- W2798553619 hasConcept C41008148 @default.
- W2798553619 hasConcept C4641261 @default.
- W2798553619 hasConcept C62520636 @default.
- W2798553619 hasConcept C83248878 @default.
- W2798553619 hasConcept C88799230 @default.
- W2798553619 hasConcept C90559484 @default.
- W2798553619 hasConcept C94625758 @default.
- W2798553619 hasConcept C97931131 @default.
- W2798553619 hasConceptScore W2798553619C111919701 @default.
- W2798553619 hasConceptScore W2798553619C115961682 @default.
- W2798553619 hasConceptScore W2798553619C118505674 @default.
- W2798553619 hasConceptScore W2798553619C121332964 @default.
- W2798553619 hasConceptScore W2798553619C144024400 @default.
- W2798553619 hasConceptScore W2798553619C153180895 @default.
- W2798553619 hasConceptScore W2798553619C154945302 @default.
- W2798553619 hasConceptScore W2798553619C163258240 @default.
- W2798553619 hasConceptScore W2798553619C167966045 @default.