Matches in SemOpenAlex for { <https://semopenalex.org/work/W2798577881> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2798577881 abstract "Given a set $X$ of $n$ binary words of equal length $w$, the 3XOR problem asks for three elements $a, b, c in X$ such that $a oplus b=c$, where $ oplus$ denotes the bitwise XOR operation. The problem can be easily solved on a word RAM with word length $w$ in time $O(n^2 log{n})$. Using Han's fast integer sorting algorithm (2002/2004) this can be reduced to $O(n^2 log{log{n}})$. With randomization or a sophisticated deterministic dictionary construction, creating a hash table for $X$ with constant lookup time leads to an algorithm with (expected) running time $O(n^2)$. At present, seemingly no faster algorithms are known. We present a surprisingly simple deterministic, quadratic time algorithm for 3XOR. Its core is a version of the Patricia trie for $X$, which makes it possible to traverse the set $a oplus X$ in ascending order for arbitrary $ain {0, 1}^{w}$ in linear time. Furthermore, we describe a randomized algorithm for 3XOR with expected running time $O(n^2cdotmin{log^3{w}/w, (loglog{n})^2/log^2 n})$. The algorithm transfers techniques to our setting that were used by Baran, Demaine, and Pu{a}trac{s}cu (2005/2008) for solving the related int3SUM problem (the same problem with integer addition in place of binary XOR) in expected time $o(n^2)$. As suggested by Jafargholi and Viola (2016), linear hash functions are employed. The latter authors also showed that assuming 3XOR needs expected running time $n^{2-o(1)}$ one can prove conditional lower bounds for triangle enumeration just as with 3SUM. We demonstrate that 3XOR can be reduced to other problems as well, treating the examples offline SetDisjointness and offline SetIntersection, which were studied for 3SUM by Kopelowitz, Pettie, and Porat (2016)." @default.
- W2798577881 created "2018-05-07" @default.
- W2798577881 creator A5024860874 @default.
- W2798577881 creator A5055179066 @default.
- W2798577881 creator A5067257613 @default.
- W2798577881 date "2018-04-30" @default.
- W2798577881 modified "2023-10-02" @default.
- W2798577881 title "A Subquadratic Algorithm for 3XOR" @default.
- W2798577881 cites W1546441687 @default.
- W2798577881 cites W2031683606 @default.
- W2798577881 cites W2049774319 @default.
- W2798577881 hasPublicationYear "2018" @default.
- W2798577881 type Work @default.
- W2798577881 sameAs 2798577881 @default.
- W2798577881 citedByCount "1" @default.
- W2798577881 countsByYear W27985778812020 @default.
- W2798577881 crossrefType "posted-content" @default.
- W2798577881 hasAuthorship W2798577881A5024860874 @default.
- W2798577881 hasAuthorship W2798577881A5055179066 @default.
- W2798577881 hasAuthorship W2798577881A5067257613 @default.
- W2798577881 hasConcept C10138342 @default.
- W2798577881 hasConcept C111696304 @default.
- W2798577881 hasConcept C11413529 @default.
- W2798577881 hasConcept C114614502 @default.
- W2798577881 hasConcept C118615104 @default.
- W2798577881 hasConcept C162324750 @default.
- W2798577881 hasConcept C182306322 @default.
- W2798577881 hasConcept C199360897 @default.
- W2798577881 hasConcept C3017489831 @default.
- W2798577881 hasConcept C311688 @default.
- W2798577881 hasConcept C33923547 @default.
- W2798577881 hasConcept C38652104 @default.
- W2798577881 hasConcept C41008148 @default.
- W2798577881 hasConcept C48372109 @default.
- W2798577881 hasConcept C63553672 @default.
- W2798577881 hasConcept C94375191 @default.
- W2798577881 hasConcept C97137487 @default.
- W2798577881 hasConcept C99138194 @default.
- W2798577881 hasConceptScore W2798577881C10138342 @default.
- W2798577881 hasConceptScore W2798577881C111696304 @default.
- W2798577881 hasConceptScore W2798577881C11413529 @default.
- W2798577881 hasConceptScore W2798577881C114614502 @default.
- W2798577881 hasConceptScore W2798577881C118615104 @default.
- W2798577881 hasConceptScore W2798577881C162324750 @default.
- W2798577881 hasConceptScore W2798577881C182306322 @default.
- W2798577881 hasConceptScore W2798577881C199360897 @default.
- W2798577881 hasConceptScore W2798577881C3017489831 @default.
- W2798577881 hasConceptScore W2798577881C311688 @default.
- W2798577881 hasConceptScore W2798577881C33923547 @default.
- W2798577881 hasConceptScore W2798577881C38652104 @default.
- W2798577881 hasConceptScore W2798577881C41008148 @default.
- W2798577881 hasConceptScore W2798577881C48372109 @default.
- W2798577881 hasConceptScore W2798577881C63553672 @default.
- W2798577881 hasConceptScore W2798577881C94375191 @default.
- W2798577881 hasConceptScore W2798577881C97137487 @default.
- W2798577881 hasConceptScore W2798577881C99138194 @default.
- W2798577881 hasLocation W27985778811 @default.
- W2798577881 hasOpenAccess W2798577881 @default.
- W2798577881 hasPrimaryLocation W27985778811 @default.
- W2798577881 hasRelatedWork W1504152872 @default.
- W2798577881 hasRelatedWork W1982530285 @default.
- W2798577881 hasRelatedWork W2030175708 @default.
- W2798577881 hasRelatedWork W2065231486 @default.
- W2798577881 hasRelatedWork W2072893536 @default.
- W2798577881 hasRelatedWork W2131917572 @default.
- W2798577881 hasRelatedWork W2162487598 @default.
- W2798577881 hasRelatedWork W2344045396 @default.
- W2798577881 hasRelatedWork W2401929940 @default.
- W2798577881 hasRelatedWork W2521054645 @default.
- W2798577881 hasRelatedWork W2774400230 @default.
- W2798577881 hasRelatedWork W2950165268 @default.
- W2798577881 hasRelatedWork W2950394272 @default.
- W2798577881 hasRelatedWork W2950456228 @default.
- W2798577881 hasRelatedWork W2951206720 @default.
- W2798577881 hasRelatedWork W2953299275 @default.
- W2798577881 hasRelatedWork W2964138151 @default.
- W2798577881 hasRelatedWork W3048914833 @default.
- W2798577881 hasRelatedWork W3185962936 @default.
- W2798577881 hasRelatedWork W2307775883 @default.
- W2798577881 isParatext "false" @default.
- W2798577881 isRetracted "false" @default.
- W2798577881 magId "2798577881" @default.
- W2798577881 workType "article" @default.