Matches in SemOpenAlex for { <https://semopenalex.org/work/W2798589477> ?p ?o ?g. }
- W2798589477 endingPage "322" @default.
- W2798589477 startingPage "315" @default.
- W2798589477 abstract "Semiconductor manufacturers aim to fabricate defect-free wafers in order to improve product quality, increase yields, and reduce costs. Typically, wafer defects form spatial patterns that provide useful information, helping to identify problems and faults during the fabrication process. Machine learning (ML) methods have been used to classify these defects in order to locate the root causes of failure. This paper proposes a novel deep-structured ML approach as an extension of our previous randomized general regression network (RGRN) model, to identify and classify both single-defect and mixed-defect patterns. The principal motivation for this paper is that a shallow-structured RGRN performs well on single-pattern defects, achieving an accuracy of 99.8%, but performs poorly when a wafer has mixed-defect patterns. The proposed approach improves RGRN performance, particularly on mixed-pattern defects, by incorporating a novel information gain (IG)-based splitter as well as deep-structured ML. A spatial filter is applied to remove random noise and reduce model bias during training. During the first detection stage, the splitter generates unique rules that are built using the IG theory and splits the defects data into single-defect and mixed-defect patterns. Single-defect patterns are then classified by RGRN, whereas mixed-defect patterns are fed into the deep-structured ML model for further classification. This combination improves the ability of the proposed approach to classify diverse defect patterns and achieve a better overall performance. Our experimental results demonstrate that the proposed approach achieves an overall detection accuracy of 86.17% on a dataset that contains real data representing both single-defect and mixed-defect patterns, as commonly found in real manufacturing scenarios, outperforming existing ML-based models." @default.
- W2798589477 created "2018-05-07" @default.
- W2798589477 creator A5004034156 @default.
- W2798589477 creator A5014443986 @default.
- W2798589477 creator A5024396260 @default.
- W2798589477 creator A5047057664 @default.
- W2798589477 creator A5065792651 @default.
- W2798589477 creator A5077119932 @default.
- W2798589477 date "2018-05-01" @default.
- W2798589477 modified "2023-10-17" @default.
- W2798589477 title "Deep-Structured Machine Learning Model for the Recognition of Mixed-Defect Patterns in Semiconductor Fabrication Processes" @default.
- W2798589477 cites W1966793008 @default.
- W2798589477 cites W1974089633 @default.
- W2798589477 cites W1979757125 @default.
- W2798589477 cites W1990881144 @default.
- W2798589477 cites W2028064052 @default.
- W2798589477 cites W2048106119 @default.
- W2798589477 cites W2051434216 @default.
- W2798589477 cites W2066956616 @default.
- W2798589477 cites W2086362611 @default.
- W2798589477 cites W2087610495 @default.
- W2798589477 cites W2091132179 @default.
- W2798589477 cites W2104441235 @default.
- W2798589477 cites W2118023920 @default.
- W2798589477 cites W2156163116 @default.
- W2798589477 cites W2158698691 @default.
- W2798589477 cites W2171151720 @default.
- W2798589477 cites W2292130855 @default.
- W2798589477 cites W2498672755 @default.
- W2798589477 cites W2529068068 @default.
- W2798589477 cites W2531634593 @default.
- W2798589477 cites W2562243886 @default.
- W2798589477 doi "https://doi.org/10.1109/tsm.2018.2825482" @default.
- W2798589477 hasPublicationYear "2018" @default.
- W2798589477 type Work @default.
- W2798589477 sameAs 2798589477 @default.
- W2798589477 citedByCount "84" @default.
- W2798589477 countsByYear W27985894772018 @default.
- W2798589477 countsByYear W27985894772019 @default.
- W2798589477 countsByYear W27985894772020 @default.
- W2798589477 countsByYear W27985894772021 @default.
- W2798589477 countsByYear W27985894772022 @default.
- W2798589477 countsByYear W27985894772023 @default.
- W2798589477 crossrefType "journal-article" @default.
- W2798589477 hasAuthorship W2798589477A5004034156 @default.
- W2798589477 hasAuthorship W2798589477A5014443986 @default.
- W2798589477 hasAuthorship W2798589477A5024396260 @default.
- W2798589477 hasAuthorship W2798589477A5047057664 @default.
- W2798589477 hasAuthorship W2798589477A5065792651 @default.
- W2798589477 hasAuthorship W2798589477A5077119932 @default.
- W2798589477 hasConcept C108583219 @default.
- W2798589477 hasConcept C111919701 @default.
- W2798589477 hasConcept C115961682 @default.
- W2798589477 hasConcept C119599485 @default.
- W2798589477 hasConcept C119857082 @default.
- W2798589477 hasConcept C124101348 @default.
- W2798589477 hasConcept C127413603 @default.
- W2798589477 hasConcept C153180895 @default.
- W2798589477 hasConcept C154945302 @default.
- W2798589477 hasConcept C160671074 @default.
- W2798589477 hasConcept C2524010 @default.
- W2798589477 hasConcept C2777403171 @default.
- W2798589477 hasConcept C33923547 @default.
- W2798589477 hasConcept C41008148 @default.
- W2798589477 hasConcept C66018809 @default.
- W2798589477 hasConcept C98045186 @default.
- W2798589477 hasConcept C99498987 @default.
- W2798589477 hasConceptScore W2798589477C108583219 @default.
- W2798589477 hasConceptScore W2798589477C111919701 @default.
- W2798589477 hasConceptScore W2798589477C115961682 @default.
- W2798589477 hasConceptScore W2798589477C119599485 @default.
- W2798589477 hasConceptScore W2798589477C119857082 @default.
- W2798589477 hasConceptScore W2798589477C124101348 @default.
- W2798589477 hasConceptScore W2798589477C127413603 @default.
- W2798589477 hasConceptScore W2798589477C153180895 @default.
- W2798589477 hasConceptScore W2798589477C154945302 @default.
- W2798589477 hasConceptScore W2798589477C160671074 @default.
- W2798589477 hasConceptScore W2798589477C2524010 @default.
- W2798589477 hasConceptScore W2798589477C2777403171 @default.
- W2798589477 hasConceptScore W2798589477C33923547 @default.
- W2798589477 hasConceptScore W2798589477C41008148 @default.
- W2798589477 hasConceptScore W2798589477C66018809 @default.
- W2798589477 hasConceptScore W2798589477C98045186 @default.
- W2798589477 hasConceptScore W2798589477C99498987 @default.
- W2798589477 hasIssue "2" @default.
- W2798589477 hasLocation W27985894771 @default.
- W2798589477 hasOpenAccess W2798589477 @default.
- W2798589477 hasPrimaryLocation W27985894771 @default.
- W2798589477 hasRelatedWork W1988252515 @default.
- W2798589477 hasRelatedWork W1998662473 @default.
- W2798589477 hasRelatedWork W2075391483 @default.
- W2798589477 hasRelatedWork W2095182624 @default.
- W2798589477 hasRelatedWork W2125532919 @default.
- W2798589477 hasRelatedWork W2329750440 @default.
- W2798589477 hasRelatedWork W2542987661 @default.
- W2798589477 hasRelatedWork W2992897358 @default.
- W2798589477 hasRelatedWork W3113134525 @default.
- W2798589477 hasRelatedWork W3135345069 @default.