Matches in SemOpenAlex for { <https://semopenalex.org/work/W2798924981> ?p ?o ?g. }
- W2798924981 endingPage "A110" @default.
- W2798924981 startingPage "A110" @default.
- W2798924981 abstract "Context. The measured average velocities in solar and stellar spectral lines formed at transition region temperatures have been difficult to interpret. The dominant redshifts observed in the lower transition region naturally leads to the question of how the upper layers of the solar (and stellar) atmosphere can be maintained. Likewise, no ready explanation has been made for the average blueshifts often found in upper transition region lines. However, realistic three-dimensional radiation magnetohydrodynamics (3D rMHD) models of the solar atmosphere are able to reproduce the observed dominant line shifts and may thus hold the key to resolve these issues. Aims. These new 3D rMHD simulations aim to shed light on how mass flows between the chromosphere and corona and on how the coronal mass is maintained. These simulations give new insights into the coupling of various atmospheric layers and the origin of Doppler shifts in the solar transition region and corona. Methods. The passive tracer particles, so-called corks, allow the tracking of parcels of plasma over time and thus the study of changes in plasma temperature and velocity not only locally, but also in a co-moving frame. By following the trajectories of the corks, we can investigate mass and energy flows and understand the composition of the observed velocities. Results. Our findings show that most of the transition region mass is cooling. The preponderance of transition region redshifts in the model can be explained by the higher percentage of downflowing mass in the lower and middle transition region. The average upflows in the upper transition region can be explained by a combination of both stronger upflows than downflows and a higher percentage of upflowing mass. The most common combination at lower and middle transition region temperatures are corks that are cooling and traveling downward. For these corks, a strong correlation between the pressure gradient along the magnetic field line and the velocity along the magnetic field line has been observed, indicating a formation mechanism that is related to downward propagating pressure disturbances. Corks at upper transition region temperatures are subject to a rather slow and highly variable but continuous heating process. Conclusions. Corks are shown to be an essential tool in 3D rMHD models in order to study mass and energy flows. We have shown that most transition region plasma is cooling after having been heated slowly to upper transition region temperatures several minutes before. Downward propagating pressure disturbances are identified as one of the main mechanisms responsible for the observed redshifts at transition region temperatures." @default.
- W2798924981 created "2018-05-07" @default.
- W2798924981 creator A5012720648 @default.
- W2798924981 creator A5025462181 @default.
- W2798924981 creator A5037450222 @default.
- W2798924981 creator A5057648356 @default.
- W2798924981 creator A5083377507 @default.
- W2798924981 date "2018-06-01" @default.
- W2798924981 modified "2023-10-11" @default.
- W2798924981 title "Disentangling flows in the solar transition region" @default.
- W2798924981 cites W1520318636 @default.
- W2798924981 cites W1964866500 @default.
- W2798924981 cites W1971440972 @default.
- W2798924981 cites W1985081671 @default.
- W2798924981 cites W1992572863 @default.
- W2798924981 cites W2000186087 @default.
- W2798924981 cites W2004653563 @default.
- W2798924981 cites W2008374346 @default.
- W2798924981 cites W2011363436 @default.
- W2798924981 cites W2011564078 @default.
- W2798924981 cites W2018521416 @default.
- W2798924981 cites W2018887533 @default.
- W2798924981 cites W2023850435 @default.
- W2798924981 cites W2037627374 @default.
- W2798924981 cites W2043843182 @default.
- W2798924981 cites W2044195164 @default.
- W2798924981 cites W2046142786 @default.
- W2798924981 cites W2139186749 @default.
- W2798924981 cites W2146803392 @default.
- W2798924981 cites W2161831348 @default.
- W2798924981 cites W2162278858 @default.
- W2798924981 cites W2167510341 @default.
- W2798924981 cites W3101213253 @default.
- W2798924981 cites W3101527787 @default.
- W2798924981 cites W3102832476 @default.
- W2798924981 cites W3105166240 @default.
- W2798924981 cites W3105247836 @default.
- W2798924981 cites W3126068872 @default.
- W2798924981 cites W4252960747 @default.
- W2798924981 doi "https://doi.org/10.1051/0004-6361/201732055" @default.
- W2798924981 hasPublicationYear "2018" @default.
- W2798924981 type Work @default.
- W2798924981 sameAs 2798924981 @default.
- W2798924981 citedByCount "13" @default.
- W2798924981 countsByYear W27989249812019 @default.
- W2798924981 countsByYear W27989249812021 @default.
- W2798924981 countsByYear W27989249812022 @default.
- W2798924981 countsByYear W27989249812023 @default.
- W2798924981 crossrefType "journal-article" @default.
- W2798924981 hasAuthorship W2798924981A5012720648 @default.
- W2798924981 hasAuthorship W2798924981A5025462181 @default.
- W2798924981 hasAuthorship W2798924981A5037450222 @default.
- W2798924981 hasAuthorship W2798924981A5057648356 @default.
- W2798924981 hasAuthorship W2798924981A5083377507 @default.
- W2798924981 hasBestOaLocation W27989249811 @default.
- W2798924981 hasConcept C106933524 @default.
- W2798924981 hasConcept C108411613 @default.
- W2798924981 hasConcept C118267159 @default.
- W2798924981 hasConcept C121332964 @default.
- W2798924981 hasConcept C127313418 @default.
- W2798924981 hasConcept C1276947 @default.
- W2798924981 hasConcept C151730666 @default.
- W2798924981 hasConcept C153294291 @default.
- W2798924981 hasConcept C198352243 @default.
- W2798924981 hasConcept C2524010 @default.
- W2798924981 hasConcept C2776779350 @default.
- W2798924981 hasConcept C2779343474 @default.
- W2798924981 hasConcept C2779900269 @default.
- W2798924981 hasConcept C30475298 @default.
- W2798924981 hasConcept C31532427 @default.
- W2798924981 hasConcept C33024259 @default.
- W2798924981 hasConcept C33923547 @default.
- W2798924981 hasConcept C44870925 @default.
- W2798924981 hasConcept C4839761 @default.
- W2798924981 hasConcept C62520636 @default.
- W2798924981 hasConcept C64162976 @default.
- W2798924981 hasConcept C65440619 @default.
- W2798924981 hasConcept C72886185 @default.
- W2798924981 hasConcept C82706917 @default.
- W2798924981 hasConcept C87355193 @default.
- W2798924981 hasConcept C98444146 @default.
- W2798924981 hasConceptScore W2798924981C106933524 @default.
- W2798924981 hasConceptScore W2798924981C108411613 @default.
- W2798924981 hasConceptScore W2798924981C118267159 @default.
- W2798924981 hasConceptScore W2798924981C121332964 @default.
- W2798924981 hasConceptScore W2798924981C127313418 @default.
- W2798924981 hasConceptScore W2798924981C1276947 @default.
- W2798924981 hasConceptScore W2798924981C151730666 @default.
- W2798924981 hasConceptScore W2798924981C153294291 @default.
- W2798924981 hasConceptScore W2798924981C198352243 @default.
- W2798924981 hasConceptScore W2798924981C2524010 @default.
- W2798924981 hasConceptScore W2798924981C2776779350 @default.
- W2798924981 hasConceptScore W2798924981C2779343474 @default.
- W2798924981 hasConceptScore W2798924981C2779900269 @default.
- W2798924981 hasConceptScore W2798924981C30475298 @default.
- W2798924981 hasConceptScore W2798924981C31532427 @default.
- W2798924981 hasConceptScore W2798924981C33024259 @default.
- W2798924981 hasConceptScore W2798924981C33923547 @default.