Matches in SemOpenAlex for { <https://semopenalex.org/work/W2798972797> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2798972797 abstract "A wide range of IoT applications use information collected from networks of sensors for monitoring and controlling purposes. In such applications, the frequent appearance of fault data makes it difficult to extract correct information, thereby making confuses in interpreting and analyzing collected data. To address this problem, it is necessary to have a mechanism to detect fault data. In this paper, we present a Trend-adaptive Multi-Scale Principal Component Analysis (Trend-adaptive MS-PCA) model for data fault detection. The proposed model inherits advantages of Discrete Wavelet Transform (DWT) in capturing time-frequency information and advantages of PCA in extracting correlation among sensors' data. Experimental results on a real dataset show the high effectiveness of the proposed model in data fault detection. Moreover, the Trend-adaptive MS-PCA shows that it outperforms fault detection techniques using PCA and MS-PCA in term of fault sensitiveness." @default.
- W2798972797 created "2018-05-07" @default.
- W2798972797 creator A5007894603 @default.
- W2798972797 creator A5012603011 @default.
- W2798972797 creator A5016825815 @default.
- W2798972797 creator A5023833145 @default.
- W2798972797 creator A5041230893 @default.
- W2798972797 creator A5054933494 @default.
- W2798972797 date "2018-01-01" @default.
- W2798972797 modified "2023-10-02" @default.
- W2798972797 title "Trend-adaptive multi-scale PCA for data fault detection in IoT networks" @default.
- W2798972797 cites W1664828614 @default.
- W2798972797 cites W1992380169 @default.
- W2798972797 cites W1999935041 @default.
- W2798972797 cites W2006091483 @default.
- W2798972797 cites W2011233235 @default.
- W2798972797 cites W2052932666 @default.
- W2798972797 cites W2056316259 @default.
- W2798972797 cites W2105103777 @default.
- W2798972797 cites W2150015649 @default.
- W2798972797 cites W2166928102 @default.
- W2798972797 cites W2486438534 @default.
- W2798972797 cites W4232711517 @default.
- W2798972797 doi "https://doi.org/10.1109/icoin.2018.8343217" @default.
- W2798972797 hasPublicationYear "2018" @default.
- W2798972797 type Work @default.
- W2798972797 sameAs 2798972797 @default.
- W2798972797 citedByCount "3" @default.
- W2798972797 countsByYear W27989727972019 @default.
- W2798972797 countsByYear W27989727972020 @default.
- W2798972797 countsByYear W27989727972023 @default.
- W2798972797 crossrefType "proceedings-article" @default.
- W2798972797 hasAuthorship W2798972797A5007894603 @default.
- W2798972797 hasAuthorship W2798972797A5012603011 @default.
- W2798972797 hasAuthorship W2798972797A5016825815 @default.
- W2798972797 hasAuthorship W2798972797A5023833145 @default.
- W2798972797 hasAuthorship W2798972797A5041230893 @default.
- W2798972797 hasAuthorship W2798972797A5054933494 @default.
- W2798972797 hasConcept C121332964 @default.
- W2798972797 hasConcept C124101348 @default.
- W2798972797 hasConcept C127313418 @default.
- W2798972797 hasConcept C152745839 @default.
- W2798972797 hasConcept C153180895 @default.
- W2798972797 hasConcept C154945302 @default.
- W2798972797 hasConcept C165205528 @default.
- W2798972797 hasConcept C172707124 @default.
- W2798972797 hasConcept C175551986 @default.
- W2798972797 hasConcept C196216189 @default.
- W2798972797 hasConcept C27438332 @default.
- W2798972797 hasConcept C2778755073 @default.
- W2798972797 hasConcept C41008148 @default.
- W2798972797 hasConcept C46286280 @default.
- W2798972797 hasConcept C47432892 @default.
- W2798972797 hasConcept C62520636 @default.
- W2798972797 hasConcept C67186912 @default.
- W2798972797 hasConcept C77088390 @default.
- W2798972797 hasConceptScore W2798972797C121332964 @default.
- W2798972797 hasConceptScore W2798972797C124101348 @default.
- W2798972797 hasConceptScore W2798972797C127313418 @default.
- W2798972797 hasConceptScore W2798972797C152745839 @default.
- W2798972797 hasConceptScore W2798972797C153180895 @default.
- W2798972797 hasConceptScore W2798972797C154945302 @default.
- W2798972797 hasConceptScore W2798972797C165205528 @default.
- W2798972797 hasConceptScore W2798972797C172707124 @default.
- W2798972797 hasConceptScore W2798972797C175551986 @default.
- W2798972797 hasConceptScore W2798972797C196216189 @default.
- W2798972797 hasConceptScore W2798972797C27438332 @default.
- W2798972797 hasConceptScore W2798972797C2778755073 @default.
- W2798972797 hasConceptScore W2798972797C41008148 @default.
- W2798972797 hasConceptScore W2798972797C46286280 @default.
- W2798972797 hasConceptScore W2798972797C47432892 @default.
- W2798972797 hasConceptScore W2798972797C62520636 @default.
- W2798972797 hasConceptScore W2798972797C67186912 @default.
- W2798972797 hasConceptScore W2798972797C77088390 @default.
- W2798972797 hasLocation W27989727971 @default.
- W2798972797 hasOpenAccess W2798972797 @default.
- W2798972797 hasPrimaryLocation W27989727971 @default.
- W2798972797 hasRelatedWork W1577789985 @default.
- W2798972797 hasRelatedWork W1994967090 @default.
- W2798972797 hasRelatedWork W2047056993 @default.
- W2798972797 hasRelatedWork W2112061901 @default.
- W2798972797 hasRelatedWork W2126087927 @default.
- W2798972797 hasRelatedWork W2174290408 @default.
- W2798972797 hasRelatedWork W2390482320 @default.
- W2798972797 hasRelatedWork W2783945364 @default.
- W2798972797 hasRelatedWork W2792520941 @default.
- W2798972797 hasRelatedWork W57803080 @default.
- W2798972797 isParatext "false" @default.
- W2798972797 isRetracted "false" @default.
- W2798972797 magId "2798972797" @default.
- W2798972797 workType "article" @default.