Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799015977> ?p ?o ?g. }
- W2799015977 endingPage "488" @default.
- W2799015977 startingPage "461" @default.
- W2799015977 abstract "Cylindrical Algebraic Decomposition (CAD) is a key tool in computational algebraic geometry, best known as a procedure to enable Quantifier Elimination over real-closed fields. However, it has a worst case complexity doubly exponential in the size of the input, which is often encountered in practice. It has been observed that for many problems a change in algorithm settings or problem formulation can cause huge differences in runtime costs, changing problem instances from intractable to easy. A number of heuristics have been developed to help with such choices, but the complicated nature of the geometric relationships involved means these are imperfect and can sometimes make poor choices. We investigate the use of machine learning (specifically support vector machines) to make such choices instead. Machine learning is the process of fitting a computer model to a complex function based on properties learned from measured data. In this paper we apply it in two case studies: the first to select between heuristics for choosing a CAD variable ordering; the second to identify when a CAD problem instance would benefit from Groebner Basis preconditioning. These appear to be the first such applications of machine learning to Symbolic Computation. We demonstrate in both cases that the machine learned choice outperforms human developed heuristics." @default.
- W2799015977 created "2018-05-07" @default.
- W2799015977 creator A5043054372 @default.
- W2799015977 creator A5052009668 @default.
- W2799015977 creator A5052550722 @default.
- W2799015977 creator A5086565312 @default.
- W2799015977 creator A5089028965 @default.
- W2799015977 date "2019-04-03" @default.
- W2799015977 modified "2023-10-14" @default.
- W2799015977 title "Using Machine Learning to Improve Cylindrical Algebraic Decomposition" @default.
- W2799015977 cites W1482222746 @default.
- W2799015977 cites W1493060511 @default.
- W2799015977 cites W1510073064 @default.
- W2799015977 cites W1542652324 @default.
- W2799015977 cites W1565449944 @default.
- W2799015977 cites W1570787829 @default.
- W2799015977 cites W1916563250 @default.
- W2799015977 cites W1949239131 @default.
- W2799015977 cites W1976567870 @default.
- W2799015977 cites W1983621455 @default.
- W2799015977 cites W1983787096 @default.
- W2799015977 cites W1984067593 @default.
- W2799015977 cites W1987281309 @default.
- W2799015977 cites W1988004808 @default.
- W2799015977 cites W1995341919 @default.
- W2799015977 cites W2004746351 @default.
- W2799015977 cites W2007074311 @default.
- W2799015977 cites W2010429995 @default.
- W2799015977 cites W2013504313 @default.
- W2799015977 cites W2016056788 @default.
- W2799015977 cites W2021431116 @default.
- W2799015977 cites W2026612342 @default.
- W2799015977 cites W2026774968 @default.
- W2799015977 cites W2031948211 @default.
- W2799015977 cites W2034519924 @default.
- W2799015977 cites W2038345254 @default.
- W2799015977 cites W2040870580 @default.
- W2799015977 cites W2051595244 @default.
- W2799015977 cites W2052865204 @default.
- W2799015977 cites W2057592112 @default.
- W2799015977 cites W2067705970 @default.
- W2799015977 cites W2067974800 @default.
- W2799015977 cites W2070771761 @default.
- W2799015977 cites W2075348750 @default.
- W2799015977 cites W2087347434 @default.
- W2799015977 cites W2093850840 @default.
- W2799015977 cites W2106974669 @default.
- W2799015977 cites W2107432340 @default.
- W2799015977 cites W2109553965 @default.
- W2799015977 cites W2109676405 @default.
- W2799015977 cites W2113881937 @default.
- W2799015977 cites W2118020653 @default.
- W2799015977 cites W2133990480 @default.
- W2799015977 cites W2135122395 @default.
- W2799015977 cites W2137983211 @default.
- W2799015977 cites W2147492008 @default.
- W2799015977 cites W2194192157 @default.
- W2799015977 cites W2370198512 @default.
- W2799015977 cites W2482086987 @default.
- W2799015977 cites W2482690948 @default.
- W2799015977 cites W2567628972 @default.
- W2799015977 cites W2611332476 @default.
- W2799015977 cites W2724130349 @default.
- W2799015977 cites W2726594508 @default.
- W2799015977 cites W2810716043 @default.
- W2799015977 cites W2978725006 @default.
- W2799015977 cites W3098379678 @default.
- W2799015977 cites W3100702068 @default.
- W2799015977 cites W3101527056 @default.
- W2799015977 cites W3103265545 @default.
- W2799015977 cites W4229917934 @default.
- W2799015977 cites W4255213956 @default.
- W2799015977 doi "https://doi.org/10.1007/s11786-019-00394-8" @default.
- W2799015977 hasPublicationYear "2019" @default.
- W2799015977 type Work @default.
- W2799015977 sameAs 2799015977 @default.
- W2799015977 citedByCount "13" @default.
- W2799015977 countsByYear W27990159772019 @default.
- W2799015977 countsByYear W27990159772020 @default.
- W2799015977 countsByYear W27990159772021 @default.
- W2799015977 countsByYear W27990159772022 @default.
- W2799015977 countsByYear W27990159772023 @default.
- W2799015977 crossrefType "journal-article" @default.
- W2799015977 hasAuthorship W2799015977A5043054372 @default.
- W2799015977 hasAuthorship W2799015977A5052009668 @default.
- W2799015977 hasAuthorship W2799015977A5052550722 @default.
- W2799015977 hasAuthorship W2799015977A5086565312 @default.
- W2799015977 hasAuthorship W2799015977A5089028965 @default.
- W2799015977 hasBestOaLocation W27990159771 @default.
- W2799015977 hasConcept C111919701 @default.
- W2799015977 hasConcept C11413529 @default.
- W2799015977 hasConcept C119857082 @default.
- W2799015977 hasConcept C124681953 @default.
- W2799015977 hasConcept C127413603 @default.
- W2799015977 hasConcept C127705205 @default.
- W2799015977 hasConcept C134306372 @default.
- W2799015977 hasConcept C138885662 @default.
- W2799015977 hasConcept C14036430 @default.