Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799041689> ?p ?o ?g. }
- W2799041689 endingPage "1215" @default.
- W2799041689 startingPage "1195" @default.
- W2799041689 abstract "With the transition of facial expression recognition (FER) from laboratory-controlled to challenging in-the-wild conditions and the recent success of deep learning techniques in various fields, deep neural networks have increasingly been leveraged to learn discriminative representations for automatic FER. Recent deep FER systems generally focus on two important issues: overfitting caused by a lack of sufficient training data and expression-unrelated variations, such as illumination, head pose, and identity bias. In this survey, we provide a comprehensive review of deep FER, including datasets and algorithms that provide insights into these intrinsic problems. First, we introduce the available datasets that are widely used in the literature and provide accepted data selection and evaluation principles for these datasets. We then describe the standard pipeline of a deep FER system with the related background knowledge and suggestions for applicable implementations for each stage. For the state-of-the-art in deep FER, we introduce existing novel deep neural networks and related training strategies that are designed for FER based on both static images and dynamic image sequences and discuss their advantages and limitations. Competitive performances and experimental comparisons on widely used benchmarks are also summarized. We then extend our survey to additional related issues and application scenarios. Finally, we review the remaining challenges and corresponding opportunities in this field as well as future directions for the design of robust deep FER systems." @default.
- W2799041689 created "2018-05-07" @default.
- W2799041689 creator A5004366207 @default.
- W2799041689 creator A5025452586 @default.
- W2799041689 date "2022-07-01" @default.
- W2799041689 modified "2023-10-14" @default.
- W2799041689 title "Deep Facial Expression Recognition: A Survey" @default.
- W2799041689 cites W1480583224 @default.
- W2799041689 cites W1522734439 @default.
- W2799041689 cites W1573760330 @default.
- W2799041689 cites W1631012836 @default.
- W2799041689 cites W1677920914 @default.
- W2799041689 cites W171902450 @default.
- W2799041689 cites W1849277567 @default.
- W2799041689 cites W1916406603 @default.
- W2799041689 cites W1947481528 @default.
- W2799041689 cites W1965028342 @default.
- W2799041689 cites W1965947362 @default.
- W2799041689 cites W1968015059 @default.
- W2799041689 cites W1974210421 @default.
- W2799041689 cites W1975436731 @default.
- W2799041689 cites W1976948919 @default.
- W2799041689 cites W1980331490 @default.
- W2799041689 cites W1981918162 @default.
- W2799041689 cites W1998294030 @default.
- W2799041689 cites W2003238582 @default.
- W2799041689 cites W2008887256 @default.
- W2799041689 cites W2022068631 @default.
- W2799041689 cites W2025905516 @default.
- W2799041689 cites W2033773055 @default.
- W2799041689 cites W2035372623 @default.
- W2799041689 cites W2039089492 @default.
- W2799041689 cites W2040738616 @default.
- W2799041689 cites W2042333532 @default.
- W2799041689 cites W2062118960 @default.
- W2799041689 cites W2074551195 @default.
- W2799041689 cites W2083021723 @default.
- W2799041689 cites W2093358637 @default.
- W2799041689 cites W2097117768 @default.
- W2799041689 cites W2101866605 @default.
- W2799041689 cites W2103943262 @default.
- W2799041689 cites W2106115875 @default.
- W2799041689 cites W2106390385 @default.
- W2799041689 cites W2107114452 @default.
- W2799041689 cites W2121684305 @default.
- W2799041689 cites W2124386111 @default.
- W2799041689 cites W2131774270 @default.
- W2799041689 cites W2139916508 @default.
- W2799041689 cites W2142584058 @default.
- W2799041689 cites W2145310492 @default.
- W2799041689 cites W2149628368 @default.
- W2799041689 cites W2150283722 @default.
- W2799041689 cites W2150341604 @default.
- W2799041689 cites W2152826865 @default.
- W2799041689 cites W2156503193 @default.
- W2799041689 cites W2157285372 @default.
- W2799041689 cites W2159017231 @default.
- W2799041689 cites W2164598857 @default.
- W2799041689 cites W2168356304 @default.
- W2799041689 cites W2169931729 @default.
- W2799041689 cites W2194775991 @default.
- W2799041689 cites W2195207531 @default.
- W2799041689 cites W2217426128 @default.
- W2799041689 cites W2217448953 @default.
- W2799041689 cites W2220384803 @default.
- W2799041689 cites W2243226955 @default.
- W2799041689 cites W2244142460 @default.
- W2799041689 cites W2246249023 @default.
- W2799041689 cites W2251198138 @default.
- W2799041689 cites W2251394420 @default.
- W2799041689 cites W2253728219 @default.
- W2799041689 cites W2277498883 @default.
- W2799041689 cites W2294427751 @default.
- W2799041689 cites W2304348237 @default.
- W2799041689 cites W2318934522 @default.
- W2799041689 cites W2325939864 @default.
- W2799041689 cites W2345305417 @default.
- W2799041689 cites W2411243579 @default.
- W2799041689 cites W2414501075 @default.
- W2799041689 cites W2436394355 @default.
- W2799041689 cites W2474193198 @default.
- W2799041689 cites W2481681431 @default.
- W2799041689 cites W2486769752 @default.
- W2799041689 cites W2487852963 @default.
- W2799041689 cites W2490049321 @default.
- W2799041689 cites W2520774990 @default.
- W2799041689 cites W2523976699 @default.
- W2799041689 cites W2531262049 @default.
- W2799041689 cites W2542323081 @default.
- W2799041689 cites W2546875627 @default.
- W2799041689 cites W2548128734 @default.
- W2799041689 cites W2548264631 @default.
- W2799041689 cites W2548529926 @default.
- W2799041689 cites W2548780814 @default.
- W2799041689 cites W2548899748 @default.
- W2799041689 cites W2550222318 @default.
- W2799041689 cites W2550929906 @default.
- W2799041689 cites W2556844902 @default.