Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799079108> ?p ?o ?g. }
- W2799079108 abstract "Learning by contrasting positive and negative samples is a general strategy adopted by many methods. Noise contrastive estimation (NCE) for word embeddings and translating embeddings for knowledge graphs are examples in NLP employing this approach. In this work, we view contrastive learning as an abstraction of all such methods and augment the negative sampler into a mixture distribution containing an adversarially learned sampler. The resulting adaptive sampler finds harder negative examples, which forces the main model to learn a better representation of the data. We evaluate our proposal on learning word embeddings, order embeddings and knowledge graph embeddings and observe both faster convergence and improved results on multiple metrics." @default.
- W2799079108 created "2018-05-07" @default.
- W2799079108 creator A5000076637 @default.
- W2799079108 creator A5043244870 @default.
- W2799079108 creator A5075984445 @default.
- W2799079108 date "2018-05-09" @default.
- W2799079108 modified "2023-09-24" @default.
- W2799079108 title "Adversarial Contrastive Estimation" @default.
- W2799079108 cites W1522301498 @default.
- W2799079108 cites W1533230146 @default.
- W2799079108 cites W1768488313 @default.
- W2799079108 cites W2067438047 @default.
- W2799079108 cites W2097826433 @default.
- W2799079108 cites W2132339004 @default.
- W2799079108 cites W2137807925 @default.
- W2799079108 cites W2138204974 @default.
- W2799079108 cites W2152790380 @default.
- W2799079108 cites W2184957013 @default.
- W2799079108 cites W2250342289 @default.
- W2799079108 cites W2250539671 @default.
- W2799079108 cites W2251012068 @default.
- W2799079108 cites W2283196293 @default.
- W2799079108 cites W2341497066 @default.
- W2799079108 cites W2432356473 @default.
- W2799079108 cites W2519314406 @default.
- W2799079108 cites W2521028896 @default.
- W2799079108 cites W2547875792 @default.
- W2799079108 cites W2560313346 @default.
- W2799079108 cites W2605135824 @default.
- W2799079108 cites W2728059831 @default.
- W2799079108 cites W2767002724 @default.
- W2799079108 cites W2768762802 @default.
- W2799079108 cites W2785442381 @default.
- W2799079108 cites W2786862591 @default.
- W2799079108 cites W284754667 @default.
- W2799079108 cites W2949182780 @default.
- W2799079108 cites W2950133940 @default.
- W2799079108 cites W2950797609 @default.
- W2799079108 cites W2952165242 @default.
- W2799079108 cites W2952339051 @default.
- W2799079108 cites W2963360726 @default.
- W2799079108 cites W2963899908 @default.
- W2799079108 cites W2964205912 @default.
- W2799079108 cites W3099206234 @default.
- W2799079108 cites W68132019 @default.
- W2799079108 doi "https://doi.org/10.48550/arxiv.1805.03642" @default.
- W2799079108 hasPublicationYear "2018" @default.
- W2799079108 type Work @default.
- W2799079108 sameAs 2799079108 @default.
- W2799079108 citedByCount "15" @default.
- W2799079108 countsByYear W27990791082018 @default.
- W2799079108 countsByYear W27990791082019 @default.
- W2799079108 countsByYear W27990791082020 @default.
- W2799079108 countsByYear W27990791082021 @default.
- W2799079108 crossrefType "posted-content" @default.
- W2799079108 hasAuthorship W2799079108A5000076637 @default.
- W2799079108 hasAuthorship W2799079108A5043244870 @default.
- W2799079108 hasAuthorship W2799079108A5075984445 @default.
- W2799079108 hasBestOaLocation W27990791081 @default.
- W2799079108 hasConcept C111472728 @default.
- W2799079108 hasConcept C115961682 @default.
- W2799079108 hasConcept C119857082 @default.
- W2799079108 hasConcept C124304363 @default.
- W2799079108 hasConcept C132525143 @default.
- W2799079108 hasConcept C138885662 @default.
- W2799079108 hasConcept C154945302 @default.
- W2799079108 hasConcept C162324750 @default.
- W2799079108 hasConcept C17744445 @default.
- W2799079108 hasConcept C199539241 @default.
- W2799079108 hasConcept C204321447 @default.
- W2799079108 hasConcept C2524010 @default.
- W2799079108 hasConcept C2776359362 @default.
- W2799079108 hasConcept C2777303404 @default.
- W2799079108 hasConcept C2778445095 @default.
- W2799079108 hasConcept C33923547 @default.
- W2799079108 hasConcept C41008148 @default.
- W2799079108 hasConcept C50522688 @default.
- W2799079108 hasConcept C80444323 @default.
- W2799079108 hasConcept C90805587 @default.
- W2799079108 hasConcept C94625758 @default.
- W2799079108 hasConcept C99498987 @default.
- W2799079108 hasConceptScore W2799079108C111472728 @default.
- W2799079108 hasConceptScore W2799079108C115961682 @default.
- W2799079108 hasConceptScore W2799079108C119857082 @default.
- W2799079108 hasConceptScore W2799079108C124304363 @default.
- W2799079108 hasConceptScore W2799079108C132525143 @default.
- W2799079108 hasConceptScore W2799079108C138885662 @default.
- W2799079108 hasConceptScore W2799079108C154945302 @default.
- W2799079108 hasConceptScore W2799079108C162324750 @default.
- W2799079108 hasConceptScore W2799079108C17744445 @default.
- W2799079108 hasConceptScore W2799079108C199539241 @default.
- W2799079108 hasConceptScore W2799079108C204321447 @default.
- W2799079108 hasConceptScore W2799079108C2524010 @default.
- W2799079108 hasConceptScore W2799079108C2776359362 @default.
- W2799079108 hasConceptScore W2799079108C2777303404 @default.
- W2799079108 hasConceptScore W2799079108C2778445095 @default.
- W2799079108 hasConceptScore W2799079108C33923547 @default.
- W2799079108 hasConceptScore W2799079108C41008148 @default.
- W2799079108 hasConceptScore W2799079108C50522688 @default.
- W2799079108 hasConceptScore W2799079108C80444323 @default.