Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799086550> ?p ?o ?g. }
- W2799086550 endingPage "2769" @default.
- W2799086550 startingPage "2755" @default.
- W2799086550 abstract "In remote sensing, each sensor can provide complementary or reinforcing information. It is valuable to fuse outputs from multiple sensors to boost overall performance. Previous supervised fusion methods often require accurate labels for each pixel in the training data. However, in many remote sensing applications, pixel-level labels are difficult or infeasible to obtain. In addition, outputs from multiple sensors often have different resolution or modalities. For example, rasterized hyperspectral imagery presents data in a pixel grid while airborne Light Detection and Ranging (LiDAR) generates dense three-dimensional (3D) point clouds. It is often difficult to directly fuse such multi-modal, multi-resolution data. To address these challenges, we present a novel Multiple Instance Multi-Resolution Fusion (MIMRF) framework that can fuse multi-resolution and multi-modal sensor outputs while learning from automatically-generated, imprecisely-labeled data. Experiments were conducted on the MUUFL Gulfport hyperspectral and LiDAR data set and a remotely-sensed soybean and weed data set. Results show improved, consistent performance on scene understanding and agricultural applications when compared to traditional fusion methods." @default.
- W2799086550 created "2018-05-07" @default.
- W2799086550 creator A5076328887 @default.
- W2799086550 creator A5079676776 @default.
- W2799086550 date "2020-04-01" @default.
- W2799086550 modified "2023-09-27" @default.
- W2799086550 title "Multiresolution Multimodal Sensor Fusion for Remote Sensing Data With Label Uncertainty" @default.
- W2799086550 cites W1497089125 @default.
- W2799086550 cites W1802022415 @default.
- W2799086550 cites W1976044762 @default.
- W2799086550 cites W1987308362 @default.
- W2799086550 cites W2000666616 @default.
- W2799086550 cites W2007442925 @default.
- W2799086550 cites W2018601649 @default.
- W2799086550 cites W2033810643 @default.
- W2799086550 cites W2034039863 @default.
- W2799086550 cites W2036234778 @default.
- W2799086550 cites W2044931739 @default.
- W2799086550 cites W2071075212 @default.
- W2799086550 cites W2071427561 @default.
- W2799086550 cites W2073534752 @default.
- W2799086550 cites W2074126754 @default.
- W2799086550 cites W2075621901 @default.
- W2799086550 cites W2081375048 @default.
- W2799086550 cites W2087263574 @default.
- W2799086550 cites W2104525659 @default.
- W2799086550 cites W2105090634 @default.
- W2799086550 cites W2107774608 @default.
- W2799086550 cites W2109579504 @default.
- W2799086550 cites W2110119381 @default.
- W2799086550 cites W2117866632 @default.
- W2799086550 cites W2118246710 @default.
- W2799086550 cites W2122472512 @default.
- W2799086550 cites W2124073038 @default.
- W2799086550 cites W2125341398 @default.
- W2799086550 cites W2129286650 @default.
- W2799086550 cites W2144364256 @default.
- W2799086550 cites W2145533960 @default.
- W2799086550 cites W2146571406 @default.
- W2799086550 cites W2165796970 @default.
- W2799086550 cites W2167089254 @default.
- W2799086550 cites W2168574380 @default.
- W2799086550 cites W2168743349 @default.
- W2799086550 cites W2168805632 @default.
- W2799086550 cites W2172207578 @default.
- W2799086550 cites W2295976914 @default.
- W2799086550 cites W2460810756 @default.
- W2799086550 cites W2514340250 @default.
- W2799086550 cites W2558299738 @default.
- W2799086550 cites W2558525954 @default.
- W2799086550 cites W2558732717 @default.
- W2799086550 cites W2567028727 @default.
- W2799086550 cites W2599078391 @default.
- W2799086550 cites W2739190510 @default.
- W2799086550 cites W2744049245 @default.
- W2799086550 cites W2756635220 @default.
- W2799086550 cites W2803926038 @default.
- W2799086550 cites W3008787144 @default.
- W2799086550 cites W3104934048 @default.
- W2799086550 doi "https://doi.org/10.1109/tgrs.2019.2955320" @default.
- W2799086550 hasPublicationYear "2020" @default.
- W2799086550 type Work @default.
- W2799086550 sameAs 2799086550 @default.
- W2799086550 citedByCount "14" @default.
- W2799086550 countsByYear W27990865502019 @default.
- W2799086550 countsByYear W27990865502020 @default.
- W2799086550 countsByYear W27990865502021 @default.
- W2799086550 countsByYear W27990865502022 @default.
- W2799086550 countsByYear W27990865502023 @default.
- W2799086550 crossrefType "journal-article" @default.
- W2799086550 hasAuthorship W2799086550A5076328887 @default.
- W2799086550 hasAuthorship W2799086550A5079676776 @default.
- W2799086550 hasBestOaLocation W27990865501 @default.
- W2799086550 hasConcept C115051666 @default.
- W2799086550 hasConcept C119599485 @default.
- W2799086550 hasConcept C127413603 @default.
- W2799086550 hasConcept C141353440 @default.
- W2799086550 hasConcept C154945302 @default.
- W2799086550 hasConcept C159078339 @default.
- W2799086550 hasConcept C160633673 @default.
- W2799086550 hasConcept C177264268 @default.
- W2799086550 hasConcept C199360897 @default.
- W2799086550 hasConcept C205649164 @default.
- W2799086550 hasConcept C31972630 @default.
- W2799086550 hasConcept C33954974 @default.
- W2799086550 hasConcept C41008148 @default.
- W2799086550 hasConcept C51399673 @default.
- W2799086550 hasConcept C58489278 @default.
- W2799086550 hasConcept C62649853 @default.
- W2799086550 hasConcept C76155785 @default.
- W2799086550 hasConceptScore W2799086550C115051666 @default.
- W2799086550 hasConceptScore W2799086550C119599485 @default.
- W2799086550 hasConceptScore W2799086550C127413603 @default.
- W2799086550 hasConceptScore W2799086550C141353440 @default.
- W2799086550 hasConceptScore W2799086550C154945302 @default.
- W2799086550 hasConceptScore W2799086550C159078339 @default.
- W2799086550 hasConceptScore W2799086550C160633673 @default.
- W2799086550 hasConceptScore W2799086550C177264268 @default.