Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799109072> ?p ?o ?g. }
- W2799109072 abstract "We consider inflationary models with the inflaton coupled to the Gauss-Bonnet term assuming a special relation $delta_1=2lambdaepsilon_1$ between the two slow-roll parameters $delta_1$ and $epsilon_1$. For the slow-roll inflation, the assumed relation leads to the reciprocal relation between the Gauss-Bonnet coupling function $xi(phi)$ and the potential $V(phi)$, and it leads to the relation $r=16(1-lambda)epsilon_1$ that reduces the tensor-to-scalar ratio $r$ by a factor of $1-lambda$. For the constant-roll inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts, and the tensor-to-scalar ratio to the first order of $epsilon_1$ by using the method of Bessel function approximation. The tensor-to-scalar ratio is reduced by a factor of $1-lambda+lambdatilde eta$. Comparing the derived $n_s$-$r$ with the observations, we obtain the constraints on the model parameters $tildeeta$ and $lambda$." @default.
- W2799109072 created "2018-05-07" @default.
- W2799109072 creator A5021806834 @default.
- W2799109072 creator A5060205206 @default.
- W2799109072 creator A5068798651 @default.
- W2799109072 date "2018-10-16" @default.
- W2799109072 modified "2023-10-17" @default.
- W2799109072 title "Inflation with Gauss-Bonnet coupling" @default.
- W2799109072 cites W1612043069 @default.
- W2799109072 cites W1759494267 @default.
- W2799109072 cites W1970074931 @default.
- W2799109072 cites W1971230011 @default.
- W2799109072 cites W1973570494 @default.
- W2799109072 cites W1973861971 @default.
- W2799109072 cites W1974662990 @default.
- W2799109072 cites W1975135987 @default.
- W2799109072 cites W1985121837 @default.
- W2799109072 cites W1987010236 @default.
- W2799109072 cites W1992265036 @default.
- W2799109072 cites W2009400980 @default.
- W2799109072 cites W2012869970 @default.
- W2799109072 cites W2019306460 @default.
- W2799109072 cites W2031796164 @default.
- W2799109072 cites W2039561427 @default.
- W2799109072 cites W2062912482 @default.
- W2799109072 cites W2072310288 @default.
- W2799109072 cites W2081135636 @default.
- W2799109072 cites W2083591292 @default.
- W2799109072 cites W2087513342 @default.
- W2799109072 cites W2095283243 @default.
- W2799109072 cites W2109539888 @default.
- W2799109072 cites W2118084428 @default.
- W2799109072 cites W2129033751 @default.
- W2799109072 cites W2131641826 @default.
- W2799109072 cites W2134251287 @default.
- W2799109072 cites W2134990923 @default.
- W2799109072 cites W2141564053 @default.
- W2799109072 cites W2149942961 @default.
- W2799109072 cites W2151199878 @default.
- W2799109072 cites W2164459358 @default.
- W2799109072 cites W2181156952 @default.
- W2799109072 cites W2189113858 @default.
- W2799109072 cites W2255073750 @default.
- W2799109072 cites W2402376165 @default.
- W2799109072 cites W2416860305 @default.
- W2799109072 cites W2491623269 @default.
- W2799109072 cites W2512653881 @default.
- W2799109072 cites W2538722197 @default.
- W2799109072 cites W2601144957 @default.
- W2799109072 cites W2605554914 @default.
- W2799109072 cites W2608689734 @default.
- W2799109072 cites W2612750691 @default.
- W2799109072 cites W2612992409 @default.
- W2799109072 cites W2624691814 @default.
- W2799109072 cites W2684219589 @default.
- W2799109072 cites W2736367454 @default.
- W2799109072 cites W2758495233 @default.
- W2799109072 cites W2766223342 @default.
- W2799109072 cites W2780634699 @default.
- W2799109072 cites W2787783421 @default.
- W2799109072 cites W2795888921 @default.
- W2799109072 cites W2808763123 @default.
- W2799109072 cites W2810885474 @default.
- W2799109072 cites W2886617229 @default.
- W2799109072 cites W2964000949 @default.
- W2799109072 cites W3100774485 @default.
- W2799109072 cites W3101693221 @default.
- W2799109072 cites W3102215415 @default.
- W2799109072 cites W3103109752 @default.
- W2799109072 cites W3103357071 @default.
- W2799109072 cites W3103514505 @default.
- W2799109072 cites W3103617454 @default.
- W2799109072 cites W3104409951 @default.
- W2799109072 cites W3104461591 @default.
- W2799109072 cites W3105387824 @default.
- W2799109072 cites W3105585609 @default.
- W2799109072 cites W3105640174 @default.
- W2799109072 cites W3105762643 @default.
- W2799109072 cites W4292993631 @default.
- W2799109072 cites W2749807386 @default.
- W2799109072 doi "https://doi.org/10.1103/physrevd.98.083521" @default.
- W2799109072 hasPublicationYear "2018" @default.
- W2799109072 type Work @default.
- W2799109072 sameAs 2799109072 @default.
- W2799109072 citedByCount "51" @default.
- W2799109072 countsByYear W27991090722019 @default.
- W2799109072 countsByYear W27991090722020 @default.
- W2799109072 countsByYear W27991090722021 @default.
- W2799109072 countsByYear W27991090722022 @default.
- W2799109072 countsByYear W27991090722023 @default.
- W2799109072 crossrefType "journal-article" @default.
- W2799109072 hasAuthorship W2799109072A5021806834 @default.
- W2799109072 hasAuthorship W2799109072A5060205206 @default.
- W2799109072 hasAuthorship W2799109072A5068798651 @default.
- W2799109072 hasBestOaLocation W27991090722 @default.
- W2799109072 hasConcept C121332964 @default.
- W2799109072 hasConcept C146846114 @default.
- W2799109072 hasConcept C155281189 @default.
- W2799109072 hasConcept C164862541 @default.
- W2799109072 hasConcept C173153575 @default.