Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799175087> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2799175087 abstract "The affinity of a user to a type of items (e.g., stories from the same publisher, and movies of the same genre) is an important signal reflecting the user's interests. Accurately estimating of the user type affinity has various applications in ranking and recommendation systems. For frequent users, simply dividing the number of interactions with content (e.g., clicks) by the number of impressions (e.g., the number of times the content is presented to each user) would be a good estimate. However, such estimates are erroneous for users who have sparse interaction history, (e.g., new users). To alleviate the problem, feature-based approaches aim to learn functions predicting the affinity score using only none-click features, such as user demographics, locations, and interests. Likewise, such approaches do not take full advantage of the interaction history of frequent users. Motivated by the limitations of the two approaches, we propose a Gamma-Poisson model that aims at utilizing the interaction history of frequent users, as well as leveraging a feature-based model for infrequent users. Our intuition is that we should rely more on the interaction history when estimating affinity for frequent users, and weigh more on feature-based model for infrequent users. We present experimental results on large-scale real-world data in a publisher content clicks prediction task to demonstrate the effectiveness of the proposed method in estimating user type affinity scores." @default.
- W2799175087 created "2018-05-07" @default.
- W2799175087 creator A5012288572 @default.
- W2799175087 creator A5015793254 @default.
- W2799175087 creator A5042170921 @default.
- W2799175087 date "2018-01-01" @default.
- W2799175087 modified "2023-09-23" @default.
- W2799175087 title "User Type Affinity Estimation Using Gamma-Poisson Model" @default.
- W2799175087 cites W2159094788 @default.
- W2799175087 cites W2171960770 @default.
- W2799175087 cites W3125937743 @default.
- W2799175087 doi "https://doi.org/10.1145/3184558.3186918" @default.
- W2799175087 hasPublicationYear "2018" @default.
- W2799175087 type Work @default.
- W2799175087 sameAs 2799175087 @default.
- W2799175087 citedByCount "0" @default.
- W2799175087 crossrefType "proceedings-article" @default.
- W2799175087 hasAuthorship W2799175087A5012288572 @default.
- W2799175087 hasAuthorship W2799175087A5015793254 @default.
- W2799175087 hasAuthorship W2799175087A5042170921 @default.
- W2799175087 hasConcept C100906024 @default.
- W2799175087 hasConcept C105795698 @default.
- W2799175087 hasConcept C111472728 @default.
- W2799175087 hasConcept C119857082 @default.
- W2799175087 hasConcept C127413603 @default.
- W2799175087 hasConcept C132010649 @default.
- W2799175087 hasConcept C138885662 @default.
- W2799175087 hasConcept C144024400 @default.
- W2799175087 hasConcept C149923435 @default.
- W2799175087 hasConcept C154945302 @default.
- W2799175087 hasConcept C189430467 @default.
- W2799175087 hasConcept C201995342 @default.
- W2799175087 hasConcept C23123220 @default.
- W2799175087 hasConcept C2776401178 @default.
- W2799175087 hasConcept C2780084366 @default.
- W2799175087 hasConcept C2780451532 @default.
- W2799175087 hasConcept C33923547 @default.
- W2799175087 hasConcept C41008148 @default.
- W2799175087 hasConcept C41895202 @default.
- W2799175087 hasConceptScore W2799175087C100906024 @default.
- W2799175087 hasConceptScore W2799175087C105795698 @default.
- W2799175087 hasConceptScore W2799175087C111472728 @default.
- W2799175087 hasConceptScore W2799175087C119857082 @default.
- W2799175087 hasConceptScore W2799175087C127413603 @default.
- W2799175087 hasConceptScore W2799175087C132010649 @default.
- W2799175087 hasConceptScore W2799175087C138885662 @default.
- W2799175087 hasConceptScore W2799175087C144024400 @default.
- W2799175087 hasConceptScore W2799175087C149923435 @default.
- W2799175087 hasConceptScore W2799175087C154945302 @default.
- W2799175087 hasConceptScore W2799175087C189430467 @default.
- W2799175087 hasConceptScore W2799175087C201995342 @default.
- W2799175087 hasConceptScore W2799175087C23123220 @default.
- W2799175087 hasConceptScore W2799175087C2776401178 @default.
- W2799175087 hasConceptScore W2799175087C2780084366 @default.
- W2799175087 hasConceptScore W2799175087C2780451532 @default.
- W2799175087 hasConceptScore W2799175087C33923547 @default.
- W2799175087 hasConceptScore W2799175087C41008148 @default.
- W2799175087 hasConceptScore W2799175087C41895202 @default.
- W2799175087 hasLocation W27991750871 @default.
- W2799175087 hasOpenAccess W2799175087 @default.
- W2799175087 hasPrimaryLocation W27991750871 @default.
- W2799175087 hasRelatedWork W1568294881 @default.
- W2799175087 hasRelatedWork W1689984 @default.
- W2799175087 hasRelatedWork W1975077895 @default.
- W2799175087 hasRelatedWork W2034040856 @default.
- W2799175087 hasRelatedWork W2056564184 @default.
- W2799175087 hasRelatedWork W2091407393 @default.
- W2799175087 hasRelatedWork W2259471720 @default.
- W2799175087 hasRelatedWork W2402077847 @default.
- W2799175087 hasRelatedWork W2494434934 @default.
- W2799175087 hasRelatedWork W2604776663 @default.
- W2799175087 hasRelatedWork W2664936498 @default.
- W2799175087 hasRelatedWork W2798713837 @default.
- W2799175087 hasRelatedWork W2901158445 @default.
- W2799175087 hasRelatedWork W2907211712 @default.
- W2799175087 hasRelatedWork W3118447047 @default.
- W2799175087 hasRelatedWork W3124851460 @default.
- W2799175087 hasRelatedWork W3153948188 @default.
- W2799175087 hasRelatedWork W3154403168 @default.
- W2799175087 hasRelatedWork W3212844924 @default.
- W2799175087 hasRelatedWork W3115234024 @default.
- W2799175087 isParatext "false" @default.
- W2799175087 isRetracted "false" @default.
- W2799175087 magId "2799175087" @default.
- W2799175087 workType "article" @default.