Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799249922> ?p ?o ?g. }
- W2799249922 abstract "The tweet count prediction of a local spatial region is to forecast the number of tweets that are likely to be posted from that area over a relatively short period of time. It has many applications such as human mobility analysis, traffic planning, and abnormal event detection. In this paper, we formulate tweet count prediction as a spatiotemporal sequence forecasting problem and design an end-to-end convolutional LSTM based network with skip connection for this problem. Such a model enables us to exploit the unique properties of spatiotemporal data, consisting of not only the temporal characteristics such as temporal closeness, period and trend properties but also spatial dependencies. Our experiments on the city of Seattle, WA as well as a larger city of New York City show that the proposed method consistently outperforms the competitive baseline approaches." @default.
- W2799249922 created "2018-05-07" @default.
- W2799249922 creator A5055599863 @default.
- W2799249922 creator A5056387232 @default.
- W2799249922 creator A5087430145 @default.
- W2799249922 creator A5087437068 @default.
- W2799249922 creator A5091546931 @default.
- W2799249922 date "2018-01-01" @default.
- W2799249922 modified "2023-10-12" @default.
- W2799249922 title "Residual Convolutional LSTM for Tweet Count Prediction" @default.
- W2799249922 cites W1981468681 @default.
- W2799249922 cites W1997717003 @default.
- W2799249922 cites W2006027035 @default.
- W2799249922 cites W2006487144 @default.
- W2799249922 cites W2009662901 @default.
- W2799249922 cites W2020360881 @default.
- W2799249922 cites W2064675550 @default.
- W2799249922 cites W2121211192 @default.
- W2799249922 cites W2128721751 @default.
- W2799249922 cites W2150964976 @default.
- W2799249922 cites W2167978925 @default.
- W2799249922 cites W2194775991 @default.
- W2799249922 cites W2295669946 @default.
- W2799249922 cites W2302255633 @default.
- W2799249922 cites W2508380041 @default.
- W2799249922 cites W2528639018 @default.
- W2799249922 cites W2530386080 @default.
- W2799249922 cites W2530876040 @default.
- W2799249922 cites W2585077751 @default.
- W2799249922 cites W2613331518 @default.
- W2799249922 cites W2761405195 @default.
- W2799249922 cites W2765129643 @default.
- W2799249922 cites W2766000905 @default.
- W2799249922 cites W2779448838 @default.
- W2799249922 cites W4238404964 @default.
- W2799249922 cites W4245848455 @default.
- W2799249922 doi "https://doi.org/10.1145/3184558.3191571" @default.
- W2799249922 hasPublicationYear "2018" @default.
- W2799249922 type Work @default.
- W2799249922 sameAs 2799249922 @default.
- W2799249922 citedByCount "12" @default.
- W2799249922 countsByYear W27992499222018 @default.
- W2799249922 countsByYear W27992499222019 @default.
- W2799249922 countsByYear W27992499222021 @default.
- W2799249922 countsByYear W27992499222022 @default.
- W2799249922 countsByYear W27992499222023 @default.
- W2799249922 crossrefType "proceedings-article" @default.
- W2799249922 hasAuthorship W2799249922A5055599863 @default.
- W2799249922 hasAuthorship W2799249922A5056387232 @default.
- W2799249922 hasAuthorship W2799249922A5087430145 @default.
- W2799249922 hasAuthorship W2799249922A5087437068 @default.
- W2799249922 hasAuthorship W2799249922A5091546931 @default.
- W2799249922 hasBestOaLocation W27992499221 @default.
- W2799249922 hasConcept C111368507 @default.
- W2799249922 hasConcept C11413529 @default.
- W2799249922 hasConcept C119857082 @default.
- W2799249922 hasConcept C121332964 @default.
- W2799249922 hasConcept C124101348 @default.
- W2799249922 hasConcept C12725497 @default.
- W2799249922 hasConcept C127313418 @default.
- W2799249922 hasConcept C134306372 @default.
- W2799249922 hasConcept C154945302 @default.
- W2799249922 hasConcept C155512373 @default.
- W2799249922 hasConcept C165696696 @default.
- W2799249922 hasConcept C2779545769 @default.
- W2799249922 hasConcept C2779662365 @default.
- W2799249922 hasConcept C33923547 @default.
- W2799249922 hasConcept C38652104 @default.
- W2799249922 hasConcept C41008148 @default.
- W2799249922 hasConcept C62520636 @default.
- W2799249922 hasConceptScore W2799249922C111368507 @default.
- W2799249922 hasConceptScore W2799249922C11413529 @default.
- W2799249922 hasConceptScore W2799249922C119857082 @default.
- W2799249922 hasConceptScore W2799249922C121332964 @default.
- W2799249922 hasConceptScore W2799249922C124101348 @default.
- W2799249922 hasConceptScore W2799249922C12725497 @default.
- W2799249922 hasConceptScore W2799249922C127313418 @default.
- W2799249922 hasConceptScore W2799249922C134306372 @default.
- W2799249922 hasConceptScore W2799249922C154945302 @default.
- W2799249922 hasConceptScore W2799249922C155512373 @default.
- W2799249922 hasConceptScore W2799249922C165696696 @default.
- W2799249922 hasConceptScore W2799249922C2779545769 @default.
- W2799249922 hasConceptScore W2799249922C2779662365 @default.
- W2799249922 hasConceptScore W2799249922C33923547 @default.
- W2799249922 hasConceptScore W2799249922C38652104 @default.
- W2799249922 hasConceptScore W2799249922C41008148 @default.
- W2799249922 hasConceptScore W2799249922C62520636 @default.
- W2799249922 hasLocation W27992499221 @default.
- W2799249922 hasOpenAccess W2799249922 @default.
- W2799249922 hasPrimaryLocation W27992499221 @default.
- W2799249922 hasRelatedWork W2285788670 @default.
- W2799249922 hasRelatedWork W2521062615 @default.
- W2799249922 hasRelatedWork W2735477435 @default.
- W2799249922 hasRelatedWork W2782645198 @default.
- W2799249922 hasRelatedWork W2901544186 @default.
- W2799249922 hasRelatedWork W2915045583 @default.
- W2799249922 hasRelatedWork W2946452775 @default.
- W2799249922 hasRelatedWork W2998526951 @default.
- W2799249922 hasRelatedWork W3045739591 @default.
- W2799249922 hasRelatedWork W3181746755 @default.