Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799343457> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2799343457 endingPage "012026" @default.
- W2799343457 startingPage "012026" @default.
- W2799343457 abstract "Stock market means the aggregation of all sellers and buyers of stocks representing their ownership claims on the business. To be completely absolute about the investment on these stocks, proper knowledge about them as well as their pricing, for both present and future is very essential. Large amount of data is collected and parsed to obtain this essential information regarding the fluctuations in the stock market. This data can be any news or public opinions in general. Recently, many methods have been used, especially big unstructured data methods to predict the stock market values. We introduce another method of focusing on deriving the best statistical learning model for predicting the future values. The data set used is very large unstructured data collected from an online social platform, commonly known as Quindl. The data from this platform is then linked to a csv fie and cleaned to obtain the essential information for stock market prediction. The method consists of carrying out the NLP (Natural Language Processing) of the data and then making it easier for the system to understand, finds and identifies the correlation in between this data and the stock market fluctuations. The model is implemented using Python Programming Language throughout the entire project to obtain flexibility and convenience of the system." @default.
- W2799343457 created "2018-05-17" @default.
- W2799343457 creator A5020183616 @default.
- W2799343457 creator A5042719813 @default.
- W2799343457 creator A5082311496 @default.
- W2799343457 creator A5084039750 @default.
- W2799343457 date "2018-04-01" @default.
- W2799343457 modified "2023-09-23" @default.
- W2799343457 title "Analysing News for Stock Market Prediction" @default.
- W2799343457 cites W2015174807 @default.
- W2799343457 cites W2123950356 @default.
- W2799343457 cites W2143385830 @default.
- W2799343457 cites W2171468534 @default.
- W2799343457 cites W4205184193 @default.
- W2799343457 doi "https://doi.org/10.1088/1742-6596/1000/1/012026" @default.
- W2799343457 hasPublicationYear "2018" @default.
- W2799343457 type Work @default.
- W2799343457 sameAs 2799343457 @default.
- W2799343457 citedByCount "1" @default.
- W2799343457 countsByYear W27993434572021 @default.
- W2799343457 crossrefType "journal-article" @default.
- W2799343457 hasAuthorship W2799343457A5020183616 @default.
- W2799343457 hasAuthorship W2799343457A5042719813 @default.
- W2799343457 hasAuthorship W2799343457A5082311496 @default.
- W2799343457 hasAuthorship W2799343457A5084039750 @default.
- W2799343457 hasBestOaLocation W27993434571 @default.
- W2799343457 hasConcept C124101348 @default.
- W2799343457 hasConcept C127413603 @default.
- W2799343457 hasConcept C149782125 @default.
- W2799343457 hasConcept C151730666 @default.
- W2799343457 hasConcept C154945302 @default.
- W2799343457 hasConcept C162324750 @default.
- W2799343457 hasConcept C186644900 @default.
- W2799343457 hasConcept C199360897 @default.
- W2799343457 hasConcept C204036174 @default.
- W2799343457 hasConcept C2522767166 @default.
- W2799343457 hasConcept C2776256503 @default.
- W2799343457 hasConcept C2780299701 @default.
- W2799343457 hasConcept C2780762169 @default.
- W2799343457 hasConcept C41008148 @default.
- W2799343457 hasConcept C519991488 @default.
- W2799343457 hasConcept C75684735 @default.
- W2799343457 hasConcept C78519656 @default.
- W2799343457 hasConcept C86803240 @default.
- W2799343457 hasConceptScore W2799343457C124101348 @default.
- W2799343457 hasConceptScore W2799343457C127413603 @default.
- W2799343457 hasConceptScore W2799343457C149782125 @default.
- W2799343457 hasConceptScore W2799343457C151730666 @default.
- W2799343457 hasConceptScore W2799343457C154945302 @default.
- W2799343457 hasConceptScore W2799343457C162324750 @default.
- W2799343457 hasConceptScore W2799343457C186644900 @default.
- W2799343457 hasConceptScore W2799343457C199360897 @default.
- W2799343457 hasConceptScore W2799343457C204036174 @default.
- W2799343457 hasConceptScore W2799343457C2522767166 @default.
- W2799343457 hasConceptScore W2799343457C2776256503 @default.
- W2799343457 hasConceptScore W2799343457C2780299701 @default.
- W2799343457 hasConceptScore W2799343457C2780762169 @default.
- W2799343457 hasConceptScore W2799343457C41008148 @default.
- W2799343457 hasConceptScore W2799343457C519991488 @default.
- W2799343457 hasConceptScore W2799343457C75684735 @default.
- W2799343457 hasConceptScore W2799343457C78519656 @default.
- W2799343457 hasConceptScore W2799343457C86803240 @default.
- W2799343457 hasLocation W27993434571 @default.
- W2799343457 hasOpenAccess W2799343457 @default.
- W2799343457 hasPrimaryLocation W27993434571 @default.
- W2799343457 hasRelatedWork W2146474426 @default.
- W2799343457 hasRelatedWork W2608950002 @default.
- W2799343457 hasRelatedWork W2741029840 @default.
- W2799343457 hasRelatedWork W2766970445 @default.
- W2799343457 hasRelatedWork W2782556841 @default.
- W2799343457 hasRelatedWork W2893344808 @default.
- W2799343457 hasRelatedWork W2906467684 @default.
- W2799343457 hasRelatedWork W2991120381 @default.
- W2799343457 hasRelatedWork W3158351066 @default.
- W2799343457 hasRelatedWork W4247880953 @default.
- W2799343457 hasVolume "1000" @default.
- W2799343457 isParatext "false" @default.
- W2799343457 isRetracted "false" @default.
- W2799343457 magId "2799343457" @default.
- W2799343457 workType "article" @default.