Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799385102> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2799385102 abstract "Author(s): Shah, Nihar Bhadresh | Advisor(s): Wainwright, Martin J; Ramchandran, Kannan | Abstract: Learning from people represents a new and expanding frontier for data science. Crowdsourcing, where data is collected from non-experts online, is now extensively employed in academic research, industry, and also for many societal causes. Two critical challenges in crowdsourcing and learning form people are that of (i) developing algorithms for maximally accurate learning and estimation that operate under minimal modeling assumptions, and (ii) designing incentive mechanisms to elicit high-quality data from people. In this thesis, we addresses these fundamental challenges in the context of several canonical problem settings that arise in learning from people.For the challenge of estimation, there are various algorithms proposed in past literature, but their reliance on strong parameter-based assumptions is severely limiting. In this thesis, we introduce a class of permutation-based models that are considerably richer than classical parameter-based models. We present algorithms for estimation which we show are both statistically optimal and significantly more robust than prior state-of-the-art methods. We also prove that our estimators automatically adapt and are simultaneously optimal over the classical parameter-based models as well, thereby enjoying a surprising win-win in the statistical bias-variance tradeoff. As for the second challenge of incentivizing people, we design a class of payment mechanisms that take a form. For several common interfaces in crowdsourcing, we show that these multiplicative mechanisms are surprisingly the only mechanisms that can guarantee honest responses and satisfy a mild and natural requirement which we call no-free-lunch. We show that our mechanisms have several additional desirable qualities. The simplicity of our mechanisms imparts them with an additional practical appeal." @default.
- W2799385102 created "2018-05-17" @default.
- W2799385102 creator A5034272491 @default.
- W2799385102 date "2017-01-01" @default.
- W2799385102 modified "2023-09-24" @default.
- W2799385102 title "Learning From People" @default.
- W2799385102 cites W1496636991 @default.
- W2799385102 cites W1523559433 @default.
- W2799385102 cites W1527935828 @default.
- W2799385102 cites W1535536445 @default.
- W2799385102 cites W1586903773 @default.
- W2799385102 cites W1655850657 @default.
- W2799385102 cites W1963728947 @default.
- W2799385102 cites W1964137263 @default.
- W2799385102 cites W1967658564 @default.
- W2799385102 cites W1969989300 @default.
- W2799385102 cites W1980510330 @default.
- W2799385102 cites W1996471421 @default.
- W2799385102 cites W2013048503 @default.
- W2799385102 cites W2014947032 @default.
- W2799385102 cites W2018623905 @default.
- W2799385102 cites W2021545778 @default.
- W2799385102 cites W2032296954 @default.
- W2799385102 cites W2044614823 @default.
- W2799385102 cites W2074726261 @default.
- W2799385102 cites W2085529605 @default.
- W2799385102 cites W2087900339 @default.
- W2799385102 cites W2106980598 @default.
- W2799385102 cites W2116343313 @default.
- W2799385102 cites W2164599981 @default.
- W2799385102 cites W2406270691 @default.
- W2799385102 cites W2489865376 @default.
- W2799385102 cites W2912765720 @default.
- W2799385102 cites W2913197263 @default.
- W2799385102 cites W2990940347 @default.
- W2799385102 cites W2994534097 @default.
- W2799385102 cites W393180982 @default.
- W2799385102 cites W50075137 @default.
- W2799385102 cites W595100507 @default.
- W2799385102 hasPublicationYear "2017" @default.
- W2799385102 type Work @default.
- W2799385102 sameAs 2799385102 @default.
- W2799385102 citedByCount "2" @default.
- W2799385102 countsByYear W27993851022017 @default.
- W2799385102 countsByYear W27993851022020 @default.
- W2799385102 crossrefType "journal-article" @default.
- W2799385102 hasAuthorship W2799385102A5034272491 @default.
- W2799385102 hasConcept C105795698 @default.
- W2799385102 hasConcept C119857082 @default.
- W2799385102 hasConcept C136764020 @default.
- W2799385102 hasConcept C151730666 @default.
- W2799385102 hasConcept C154945302 @default.
- W2799385102 hasConcept C185429906 @default.
- W2799385102 hasConcept C2522767166 @default.
- W2799385102 hasConcept C2777212361 @default.
- W2799385102 hasConcept C2779343474 @default.
- W2799385102 hasConcept C33923547 @default.
- W2799385102 hasConcept C41008148 @default.
- W2799385102 hasConcept C62230096 @default.
- W2799385102 hasConcept C86803240 @default.
- W2799385102 hasConceptScore W2799385102C105795698 @default.
- W2799385102 hasConceptScore W2799385102C119857082 @default.
- W2799385102 hasConceptScore W2799385102C136764020 @default.
- W2799385102 hasConceptScore W2799385102C151730666 @default.
- W2799385102 hasConceptScore W2799385102C154945302 @default.
- W2799385102 hasConceptScore W2799385102C185429906 @default.
- W2799385102 hasConceptScore W2799385102C2522767166 @default.
- W2799385102 hasConceptScore W2799385102C2777212361 @default.
- W2799385102 hasConceptScore W2799385102C2779343474 @default.
- W2799385102 hasConceptScore W2799385102C33923547 @default.
- W2799385102 hasConceptScore W2799385102C41008148 @default.
- W2799385102 hasConceptScore W2799385102C62230096 @default.
- W2799385102 hasConceptScore W2799385102C86803240 @default.
- W2799385102 hasLocation W27993851021 @default.
- W2799385102 hasOpenAccess W2799385102 @default.
- W2799385102 hasPrimaryLocation W27993851021 @default.
- W2799385102 hasRelatedWork W142858861 @default.
- W2799385102 hasRelatedWork W2167567739 @default.
- W2799385102 hasRelatedWork W2220305212 @default.
- W2799385102 hasRelatedWork W2553923866 @default.
- W2799385102 hasRelatedWork W2770939375 @default.
- W2799385102 hasRelatedWork W2771004121 @default.
- W2799385102 hasRelatedWork W2775694264 @default.
- W2799385102 hasRelatedWork W2890211540 @default.
- W2799385102 hasRelatedWork W2950123107 @default.
- W2799385102 hasRelatedWork W2951077615 @default.
- W2799385102 hasRelatedWork W3011584947 @default.
- W2799385102 hasRelatedWork W3033000596 @default.
- W2799385102 hasRelatedWork W3090448441 @default.
- W2799385102 hasRelatedWork W3097784654 @default.
- W2799385102 hasRelatedWork W3110088573 @default.
- W2799385102 hasRelatedWork W3135893734 @default.
- W2799385102 hasRelatedWork W3148050268 @default.
- W2799385102 hasRelatedWork W3157726923 @default.
- W2799385102 hasRelatedWork W3209838601 @default.
- W2799385102 hasRelatedWork W50830905 @default.
- W2799385102 isParatext "false" @default.
- W2799385102 isRetracted "false" @default.
- W2799385102 magId "2799385102" @default.
- W2799385102 workType "article" @default.