Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799407222> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2799407222 abstract "Nowadays, we live in a world in which people are facing with a lot of data that should be stored or displayed. One of the key methods to control and manage this data refers to grouping and classifying them in clusters. Today, clustering has a critical role in information retrieval methods for organizing large collections inside a few significant clusters. One of the main motivations for the use of clustering is to determine and reveal the hidden and inherent structure of a set of data. Ensemble clustering algorithms combine multiple clustering algorithms to finally reach an overall clustering system. Ensemble clustering methods by lack of information fusing utilize several primary partitions of data to find better ways. Since various clustering algorithms look at the different data points, they can produce various partitions from such data. It is possible to create a partition with high performance by combining the partitions obtained from different algorithms, even if the clusters to be very dense from each other. Most studies in this area have examined all the initial clusters. In this study, a new method is used in which the most sustainable clusters are utilized instead of all primary produced clusters. Consensus function based on co-association matrixes used to select more stable clusters. The most stable clusters selection method is done by cluster stability criterion based on F-measure. Optimization functions are used to optimize the obtained final clusters. The genetic algorithm is the optimizer used in this article to find the ultimate clusters participated in a consensus. Experimental results on several datasets show that the output of proposed method is various clusters with high stability." @default.
- W2799407222 created "2018-05-17" @default.
- W2799407222 creator A5019606307 @default.
- W2799407222 creator A5022398661 @default.
- W2799407222 date "2018-04-17" @default.
- W2799407222 modified "2023-09-26" @default.
- W2799407222 title "Converting Ensemble Clustering Problem to a Mathematical Optimization Problem and Providing an Approach to Solve Based on Optimization Toolbox" @default.
- W2799407222 cites W1496153843 @default.
- W2799407222 cites W1570448133 @default.
- W2799407222 cites W1992419399 @default.
- W2799407222 cites W2107903523 @default.
- W2799407222 cites W2140190241 @default.
- W2799407222 cites W2184757518 @default.
- W2799407222 doi "https://doi.org/10.20944/preprints201804.0227.v1" @default.
- W2799407222 hasPublicationYear "2018" @default.
- W2799407222 type Work @default.
- W2799407222 sameAs 2799407222 @default.
- W2799407222 citedByCount "1" @default.
- W2799407222 countsByYear W27994072222020 @default.
- W2799407222 crossrefType "posted-content" @default.
- W2799407222 hasAuthorship W2799407222A5019606307 @default.
- W2799407222 hasAuthorship W2799407222A5022398661 @default.
- W2799407222 hasBestOaLocation W27994072221 @default.
- W2799407222 hasConcept C11413529 @default.
- W2799407222 hasConcept C126255220 @default.
- W2799407222 hasConcept C137836250 @default.
- W2799407222 hasConcept C154945302 @default.
- W2799407222 hasConcept C199360897 @default.
- W2799407222 hasConcept C2777655017 @default.
- W2799407222 hasConcept C33923547 @default.
- W2799407222 hasConcept C41008148 @default.
- W2799407222 hasConcept C73555534 @default.
- W2799407222 hasConceptScore W2799407222C11413529 @default.
- W2799407222 hasConceptScore W2799407222C126255220 @default.
- W2799407222 hasConceptScore W2799407222C137836250 @default.
- W2799407222 hasConceptScore W2799407222C154945302 @default.
- W2799407222 hasConceptScore W2799407222C199360897 @default.
- W2799407222 hasConceptScore W2799407222C2777655017 @default.
- W2799407222 hasConceptScore W2799407222C33923547 @default.
- W2799407222 hasConceptScore W2799407222C41008148 @default.
- W2799407222 hasConceptScore W2799407222C73555534 @default.
- W2799407222 hasLocation W27994072221 @default.
- W2799407222 hasOpenAccess W2799407222 @default.
- W2799407222 hasPrimaryLocation W27994072221 @default.
- W2799407222 hasRelatedWork W109960682 @default.
- W2799407222 hasRelatedWork W1554569579 @default.
- W2799407222 hasRelatedWork W1976415167 @default.
- W2799407222 hasRelatedWork W1981573888 @default.
- W2799407222 hasRelatedWork W2037000183 @default.
- W2799407222 hasRelatedWork W2053155221 @default.
- W2799407222 hasRelatedWork W2085439998 @default.
- W2799407222 hasRelatedWork W2086963655 @default.
- W2799407222 hasRelatedWork W2157880380 @default.
- W2799407222 hasRelatedWork W2345850996 @default.
- W2799407222 hasRelatedWork W2375439838 @default.
- W2799407222 hasRelatedWork W2731043560 @default.
- W2799407222 hasRelatedWork W2769360088 @default.
- W2799407222 hasRelatedWork W2798453008 @default.
- W2799407222 hasRelatedWork W2943892938 @default.
- W2799407222 hasRelatedWork W2948004663 @default.
- W2799407222 hasRelatedWork W3174184718 @default.
- W2799407222 hasRelatedWork W3198541611 @default.
- W2799407222 hasRelatedWork W2166980895 @default.
- W2799407222 hasRelatedWork W2515532987 @default.
- W2799407222 isParatext "false" @default.
- W2799407222 isRetracted "false" @default.
- W2799407222 magId "2799407222" @default.
- W2799407222 workType "article" @default.