Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799474048> ?p ?o ?g. }
- W2799474048 endingPage "2181" @default.
- W2799474048 startingPage "2166" @default.
- W2799474048 abstract "Multistimuli-responsive l-tyrosine-based amphiphilic poly(ester-urethane) nanocarriers were designed and developed for the first time to administer anticancer drugs in cancer tissue environments via thermoresponsiveness and lysosomal enzymatic biodegradation from a single polymer platform. For this purpose, multifunctional l-tyrosine monomer was tailor-made with a PEGylated side chain at the phenolic position along with urethane and carboxylic ester functionalities. Under melt dual ester-urethane polycondensation, the tyrosine monomer reacted with diols to produce high molecular weight amphiphilic poly(ester-urethane)s. The polymers produced 100 ± 10 nm spherical nanoparticles in aqueous medium, and they exhibited thermoresponsiveness followed by phase transition from clear solution into a turbid solution in heating/cooling cycles. Variable temperature transmittance, dynamic light scattering, and 1H NMR studies revealed that the polymer chains underwent reversible phase transition from coil-to-expanded chain conformation for exhibiting the thermoresponsive behavior. The lower critical solution temperature of the nanocarriers was found to correspond to cancer tissue temperature (at 42–44 °C), which was explored as an extracellular trigger (stimuli-1) for drug delivery through the disassembly process. The ester bond in the poly(ester-urethane) backbones readily underwent enzymatic biodegradation in the lysosomal compartments that served as intracellular stimuli (stimuli-2) to deliver drugs. Doxorubicin (DOX) and camptothecin (CPT) drug-loaded polymer nanocarriers were tested for cellular uptake and cytotoxicity studies in the normal WT-MEF cell line and cervical (HeLa) and breast (MCF7) cancer cell lines. In vitro drug release studies revealed that the polymer nanoparticles were stable under physiological conditions (37 °C, pH 7.4) and they exclusively underwent disassembly at cancer tissue temperature (at 42 °C) and biodegradation by lysosomal-esterase enzyme to deliver 90% of DOX and CPT. Drug-loaded polymer nanoparticles exhibited better cytotoxic effects than their corresponding free drugs. Live cell confocal microscopy imaging experiments with lysosomal tracker confirmed the endocytosis of the polymer nanoparticles and their biodegradation in the lysosomal compartments in cancer cells. The increment in the drug content in the cells incubated at 42 °C compared to 37 °C supported the enhanced drug uptake by the cancer cells under thermoresponsive stimuli. The present work creates a new platform for the l-amino acid multiple-responsive polymer nanocarrier platform for drug delivery, and the proof-of-concept was successfully demonstrated for l-tyrosine polymers in cervical and breast cancer cells." @default.
- W2799474048 created "2018-05-17" @default.
- W2799474048 creator A5016731932 @default.
- W2799474048 creator A5047907477 @default.
- W2799474048 creator A5062248242 @default.
- W2799474048 creator A5090957802 @default.
- W2799474048 date "2018-04-17" @default.
- W2799474048 modified "2023-10-03" @default.
- W2799474048 title "Multistimuli-Responsive Amphiphilic Poly(ester-urethane) Nanoassemblies Based on <scp>l</scp>-Tyrosine for Intracellular Drug Delivery to Cancer Cells" @default.
- W2799474048 cites W160657339 @default.
- W2799474048 cites W1863443235 @default.
- W2799474048 cites W1903419358 @default.
- W2799474048 cites W1928981728 @default.
- W2799474048 cites W1964358894 @default.
- W2799474048 cites W1975193857 @default.
- W2799474048 cites W1976041621 @default.
- W2799474048 cites W1986740088 @default.
- W2799474048 cites W1990136133 @default.
- W2799474048 cites W1998479844 @default.
- W2799474048 cites W2000670646 @default.
- W2799474048 cites W2007550958 @default.
- W2799474048 cites W2009382338 @default.
- W2799474048 cites W2013371585 @default.
- W2799474048 cites W2015491525 @default.
- W2799474048 cites W2024058385 @default.
- W2799474048 cites W2025439968 @default.
- W2799474048 cites W2026711681 @default.
- W2799474048 cites W2026806120 @default.
- W2799474048 cites W2029524196 @default.
- W2799474048 cites W2043958321 @default.
- W2799474048 cites W2046502000 @default.
- W2799474048 cites W2048069206 @default.
- W2799474048 cites W2049726858 @default.
- W2799474048 cites W2052638817 @default.
- W2799474048 cites W2053970667 @default.
- W2799474048 cites W2057846324 @default.
- W2799474048 cites W2061208808 @default.
- W2799474048 cites W2061615335 @default.
- W2799474048 cites W2063502498 @default.
- W2799474048 cites W2069237312 @default.
- W2799474048 cites W2072198924 @default.
- W2799474048 cites W2073671834 @default.
- W2799474048 cites W2079432075 @default.
- W2799474048 cites W2080744386 @default.
- W2799474048 cites W2081995675 @default.
- W2799474048 cites W2085627259 @default.
- W2799474048 cites W2091736270 @default.
- W2799474048 cites W2093244494 @default.
- W2799474048 cites W2096414566 @default.
- W2799474048 cites W2099740478 @default.
- W2799474048 cites W2109211417 @default.
- W2799474048 cites W2129248052 @default.
- W2799474048 cites W2159411213 @default.
- W2799474048 cites W2188704646 @default.
- W2799474048 cites W2215988569 @default.
- W2799474048 cites W2238637281 @default.
- W2799474048 cites W2316872222 @default.
- W2799474048 cites W2317606986 @default.
- W2799474048 cites W2323640168 @default.
- W2799474048 cites W2327633155 @default.
- W2799474048 cites W2329511366 @default.
- W2799474048 cites W2329846226 @default.
- W2799474048 cites W2330317414 @default.
- W2799474048 cites W2334379092 @default.
- W2799474048 cites W2411048407 @default.
- W2799474048 cites W2463718228 @default.
- W2799474048 cites W2493609519 @default.
- W2799474048 cites W2550938682 @default.
- W2799474048 cites W2734449375 @default.
- W2799474048 doi "https://doi.org/10.1021/acs.biomac.8b00334" @default.
- W2799474048 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29664622" @default.
- W2799474048 hasPublicationYear "2018" @default.
- W2799474048 type Work @default.
- W2799474048 sameAs 2799474048 @default.
- W2799474048 citedByCount "30" @default.
- W2799474048 countsByYear W27994740482018 @default.
- W2799474048 countsByYear W27994740482019 @default.
- W2799474048 countsByYear W27994740482020 @default.
- W2799474048 countsByYear W27994740482021 @default.
- W2799474048 countsByYear W27994740482022 @default.
- W2799474048 countsByYear W27994740482023 @default.
- W2799474048 crossrefType "journal-article" @default.
- W2799474048 hasAuthorship W2799474048A5016731932 @default.
- W2799474048 hasAuthorship W2799474048A5047907477 @default.
- W2799474048 hasAuthorship W2799474048A5062248242 @default.
- W2799474048 hasAuthorship W2799474048A5090957802 @default.
- W2799474048 hasConcept C12554922 @default.
- W2799474048 hasConcept C13245373 @default.
- W2799474048 hasConcept C15920480 @default.
- W2799474048 hasConcept C166940927 @default.
- W2799474048 hasConcept C178790620 @default.
- W2799474048 hasConcept C18150654 @default.
- W2799474048 hasConcept C185592680 @default.
- W2799474048 hasConcept C188027245 @default.
- W2799474048 hasConcept C192562407 @default.
- W2799474048 hasConcept C2779820397 @default.
- W2799474048 hasConcept C521977710 @default.
- W2799474048 hasConcept C67407626 @default.