Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799534722> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2799534722 endingPage "143" @default.
- W2799534722 startingPage "133" @default.
- W2799534722 abstract "Modern vessels are designed to collect, store and communicate large quantities of ship performance and navigation information through complex onboard data handling processes. That data should be transferred to shore based data centers for further analysis and storage. However, the associated transfer cost in large-scale data sets is a major challenge for the shipping industry, today. The same cost relates to the amount of data that are transferring through various communication networks (i.e. satellites and wireless networks), i.e. between vessels and shore based data centers. Hence, this study proposes to use an autoencoder system architecture (i.e. a deep learning approach) to compress ship performance and navigation parameters (i.e. reduce the number of parameters) and transfer through the respective communication networks as reduced data sets. The data compression is done under the linear version of an autoencoder that consists of principal component analysis (PCA), where the respective principal components (PCs) represent the structure of the data set. The compressed data set is expanded by the same data structure (i.e. an autoencoder system architecture) at the respective data center requiring further analyses and storage. A data set of ship performance and navigation parameters in a selected vessel is analyzed (i.e. data compression and expansion) through an autoencoder system architecture and the results are presented in this study. Furthermore, the respective input and output values of the autoencoder are also compared as statistical distributions and sample number series to evaluate its performance." @default.
- W2799534722 created "2018-05-17" @default.
- W2799534722 creator A5017362385 @default.
- W2799534722 creator A5070046100 @default.
- W2799534722 date "2018-06-01" @default.
- W2799534722 modified "2023-09-30" @default.
- W2799534722 title "Ship performance and navigation data compression and communication under autoencoder system architecture" @default.
- W2799534722 cites W1975513190 @default.
- W2799534722 cites W2022603014 @default.
- W2799534722 cites W2043234919 @default.
- W2799534722 cites W2071811776 @default.
- W2799534722 cites W2098006861 @default.
- W2799534722 cites W2102395981 @default.
- W2799534722 cites W2104546343 @default.
- W2799534722 cites W2108196201 @default.
- W2799534722 cites W2124365224 @default.
- W2799534722 cites W2127369486 @default.
- W2799534722 cites W2139603520 @default.
- W2799534722 cites W2180375070 @default.
- W2799534722 cites W2345215127 @default.
- W2799534722 cites W2611823526 @default.
- W2799534722 doi "https://doi.org/10.1016/j.joes.2018.04.002" @default.
- W2799534722 hasPublicationYear "2018" @default.
- W2799534722 type Work @default.
- W2799534722 sameAs 2799534722 @default.
- W2799534722 citedByCount "19" @default.
- W2799534722 countsByYear W27995347222019 @default.
- W2799534722 countsByYear W27995347222020 @default.
- W2799534722 countsByYear W27995347222021 @default.
- W2799534722 countsByYear W27995347222022 @default.
- W2799534722 countsByYear W27995347222023 @default.
- W2799534722 crossrefType "journal-article" @default.
- W2799534722 hasAuthorship W2799534722A5017362385 @default.
- W2799534722 hasAuthorship W2799534722A5070046100 @default.
- W2799534722 hasBestOaLocation W27995347221 @default.
- W2799534722 hasConcept C101738243 @default.
- W2799534722 hasConcept C124101348 @default.
- W2799534722 hasConcept C154945302 @default.
- W2799534722 hasConcept C177264268 @default.
- W2799534722 hasConcept C199360897 @default.
- W2799534722 hasConcept C27438332 @default.
- W2799534722 hasConcept C41008148 @default.
- W2799534722 hasConcept C50644808 @default.
- W2799534722 hasConcept C58489278 @default.
- W2799534722 hasConcept C78548338 @default.
- W2799534722 hasConcept C79403827 @default.
- W2799534722 hasConceptScore W2799534722C101738243 @default.
- W2799534722 hasConceptScore W2799534722C124101348 @default.
- W2799534722 hasConceptScore W2799534722C154945302 @default.
- W2799534722 hasConceptScore W2799534722C177264268 @default.
- W2799534722 hasConceptScore W2799534722C199360897 @default.
- W2799534722 hasConceptScore W2799534722C27438332 @default.
- W2799534722 hasConceptScore W2799534722C41008148 @default.
- W2799534722 hasConceptScore W2799534722C50644808 @default.
- W2799534722 hasConceptScore W2799534722C58489278 @default.
- W2799534722 hasConceptScore W2799534722C78548338 @default.
- W2799534722 hasConceptScore W2799534722C79403827 @default.
- W2799534722 hasFunder F4320320847 @default.
- W2799534722 hasFunder F4320323299 @default.
- W2799534722 hasIssue "2" @default.
- W2799534722 hasLocation W27995347221 @default.
- W2799534722 hasLocation W27995347222 @default.
- W2799534722 hasOpenAccess W2799534722 @default.
- W2799534722 hasPrimaryLocation W27995347221 @default.
- W2799534722 hasRelatedWork W1993683021 @default.
- W2799534722 hasRelatedWork W2091018730 @default.
- W2799534722 hasRelatedWork W2162491638 @default.
- W2799534722 hasRelatedWork W2172200718 @default.
- W2799534722 hasRelatedWork W2250140425 @default.
- W2799534722 hasRelatedWork W2362802221 @default.
- W2799534722 hasRelatedWork W2734587838 @default.
- W2799534722 hasRelatedWork W2771038650 @default.
- W2799534722 hasRelatedWork W2889062129 @default.
- W2799534722 hasRelatedWork W2899564673 @default.
- W2799534722 hasVolume "3" @default.
- W2799534722 isParatext "false" @default.
- W2799534722 isRetracted "false" @default.
- W2799534722 magId "2799534722" @default.
- W2799534722 workType "article" @default.