Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799554028> ?p ?o ?g. }
- W2799554028 endingPage "170" @default.
- W2799554028 startingPage "161" @default.
- W2799554028 abstract "Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods." @default.
- W2799554028 created "2018-05-17" @default.
- W2799554028 creator A5002264720 @default.
- W2799554028 creator A5019046203 @default.
- W2799554028 creator A5056971322 @default.
- W2799554028 creator A5087766208 @default.
- W2799554028 date "2018-06-01" @default.
- W2799554028 modified "2023-10-15" @default.
- W2799554028 title "Toward optimal feature and time segment selection by divergence method for EEG signals classification" @default.
- W2799554028 cites W1147354400 @default.
- W2799554028 cites W1582217385 @default.
- W2799554028 cites W1643862474 @default.
- W2799554028 cites W196871588 @default.
- W2799554028 cites W1969921488 @default.
- W2799554028 cites W1988624531 @default.
- W2799554028 cites W2007719925 @default.
- W2799554028 cites W2020089616 @default.
- W2799554028 cites W2040884411 @default.
- W2799554028 cites W2042587503 @default.
- W2799554028 cites W2057311210 @default.
- W2799554028 cites W2087576375 @default.
- W2799554028 cites W2099509424 @default.
- W2799554028 cites W2101591109 @default.
- W2799554028 cites W2109414107 @default.
- W2799554028 cites W2112421596 @default.
- W2799554028 cites W2134478553 @default.
- W2799554028 cites W2142280324 @default.
- W2799554028 cites W2145947508 @default.
- W2799554028 cites W2152119085 @default.
- W2799554028 cites W2158006723 @default.
- W2799554028 cites W2158698691 @default.
- W2799554028 cites W2163922914 @default.
- W2799554028 cites W2165177179 @default.
- W2799554028 cites W2165892205 @default.
- W2799554028 cites W2263270445 @default.
- W2799554028 cites W2300543478 @default.
- W2799554028 cites W4292332980 @default.
- W2799554028 doi "https://doi.org/10.1016/j.compbiomed.2018.04.022" @default.
- W2799554028 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29747059" @default.
- W2799554028 hasPublicationYear "2018" @default.
- W2799554028 type Work @default.
- W2799554028 sameAs 2799554028 @default.
- W2799554028 citedByCount "26" @default.
- W2799554028 countsByYear W27995540282018 @default.
- W2799554028 countsByYear W27995540282019 @default.
- W2799554028 countsByYear W27995540282020 @default.
- W2799554028 countsByYear W27995540282021 @default.
- W2799554028 countsByYear W27995540282022 @default.
- W2799554028 countsByYear W27995540282023 @default.
- W2799554028 crossrefType "journal-article" @default.
- W2799554028 hasAuthorship W2799554028A5002264720 @default.
- W2799554028 hasAuthorship W2799554028A5019046203 @default.
- W2799554028 hasAuthorship W2799554028A5056971322 @default.
- W2799554028 hasAuthorship W2799554028A5087766208 @default.
- W2799554028 hasConcept C105795698 @default.
- W2799554028 hasConcept C124101348 @default.
- W2799554028 hasConcept C138885662 @default.
- W2799554028 hasConcept C148483581 @default.
- W2799554028 hasConcept C153180895 @default.
- W2799554028 hasConcept C154945302 @default.
- W2799554028 hasConcept C159877910 @default.
- W2799554028 hasConcept C207390915 @default.
- W2799554028 hasConcept C2776401178 @default.
- W2799554028 hasConcept C33923547 @default.
- W2799554028 hasConcept C34736171 @default.
- W2799554028 hasConcept C41008148 @default.
- W2799554028 hasConcept C41895202 @default.
- W2799554028 hasConcept C52622490 @default.
- W2799554028 hasConcept C97931131 @default.
- W2799554028 hasConceptScore W2799554028C105795698 @default.
- W2799554028 hasConceptScore W2799554028C124101348 @default.
- W2799554028 hasConceptScore W2799554028C138885662 @default.
- W2799554028 hasConceptScore W2799554028C148483581 @default.
- W2799554028 hasConceptScore W2799554028C153180895 @default.
- W2799554028 hasConceptScore W2799554028C154945302 @default.
- W2799554028 hasConceptScore W2799554028C159877910 @default.
- W2799554028 hasConceptScore W2799554028C207390915 @default.
- W2799554028 hasConceptScore W2799554028C2776401178 @default.
- W2799554028 hasConceptScore W2799554028C33923547 @default.
- W2799554028 hasConceptScore W2799554028C34736171 @default.
- W2799554028 hasConceptScore W2799554028C41008148 @default.
- W2799554028 hasConceptScore W2799554028C41895202 @default.
- W2799554028 hasConceptScore W2799554028C52622490 @default.
- W2799554028 hasConceptScore W2799554028C97931131 @default.
- W2799554028 hasFunder F4320321001 @default.
- W2799554028 hasFunder F4320321543 @default.
- W2799554028 hasFunder F4320335787 @default.
- W2799554028 hasFunder F4320335791 @default.
- W2799554028 hasFunder F4320336024 @default.
- W2799554028 hasLocation W27995540281 @default.
- W2799554028 hasLocation W27995540282 @default.
- W2799554028 hasOpenAccess W2799554028 @default.
- W2799554028 hasPrimaryLocation W27995540281 @default.
- W2799554028 hasRelatedWork W2089890389 @default.
- W2799554028 hasRelatedWork W2111662190 @default.
- W2799554028 hasRelatedWork W2126100045 @default.
- W2799554028 hasRelatedWork W2391959412 @default.
- W2799554028 hasRelatedWork W2404514746 @default.