Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799693458> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2799693458 abstract "Understanding business behavior in a city requires acquiring huge amount of data coming from diverse field studies. The growing use of mobile devices in social media provides massive data transactions that can replace such data acquired by field studies. Location‐based social networks' (LBSNs') data can be exploited in urban analysis for economic reasons. In this research, the spatial correlation of business turnouts for venues registered in LBSNs is studied for business behavior predictions. A novel similarity embedded (SE)‐spatial interpolation technique is proposed for business turnouts' predictions. The proposed technique utilizes diverse features provided by LBSNs in the prediction process to improve prediction performance. Moreover, a local filter is introduced to avoid local extreme involvements in the prediction process issuing better prediction results. To test the proposed techniques, experimental case study is implemented for predicting business behavior of venues registered in Foursquare in Texas. The proposed SE‐spatial interpolation has shown better prediction accuracy than classical spatial interpolation predictions. The additional integration of the local filter shows further alleviated prediction errors. Furthermore, this study extends the work for the efficient application of the proposed prediction technique in big datasets. An iterative nearest neighbors first search method is designed for accelerating the execution time of the prediction technique implementation regardless the dataset size. The proposed method was tested over several size datasets. The test results show accelerated execution time for the proposed method when compared with the classical implementation execution time. This article is categorized under: Algorithmic Development > Spatial and Temporal Data Mining Fundamental Concepts of Data and Knowledge > Big Data Mining Technologies > Prediction" @default.
- W2799693458 created "2018-05-17" @default.
- W2799693458 creator A5000210684 @default.
- W2799693458 creator A5004352908 @default.
- W2799693458 creator A5028263461 @default.
- W2799693458 creator A5052342522 @default.
- W2799693458 date "2018-05-07" @default.
- W2799693458 modified "2023-09-23" @default.
- W2799693458 title "Toward efficient business behavior prediction using location‐based social networks" @default.
- W2799693458 cites W1570713908 @default.
- W2799693458 cites W178936431 @default.
- W2799693458 cites W1971229472 @default.
- W2799693458 cites W1973749534 @default.
- W2799693458 cites W1982397092 @default.
- W2799693458 cites W1995103535 @default.
- W2799693458 cites W2001344462 @default.
- W2799693458 cites W2013598124 @default.
- W2799693458 cites W2024162008 @default.
- W2799693458 cites W2031592828 @default.
- W2799693458 cites W2051725773 @default.
- W2799693458 cites W2053697364 @default.
- W2799693458 cites W2054560962 @default.
- W2799693458 cites W2075190119 @default.
- W2799693458 cites W2087692915 @default.
- W2799693458 cites W2097293999 @default.
- W2799693458 cites W2101320768 @default.
- W2799693458 cites W2110953678 @default.
- W2799693458 cites W2139809240 @default.
- W2799693458 cites W2141596757 @default.
- W2799693458 cites W2147169375 @default.
- W2799693458 cites W2164061616 @default.
- W2799693458 cites W2168598907 @default.
- W2799693458 cites W2294749418 @default.
- W2799693458 cites W3100612189 @default.
- W2799693458 cites W3104203884 @default.
- W2799693458 cites W3122598275 @default.
- W2799693458 cites W4246528899 @default.
- W2799693458 cites W4289866267 @default.
- W2799693458 doi "https://doi.org/10.1002/widm.1263" @default.
- W2799693458 hasPublicationYear "2018" @default.
- W2799693458 type Work @default.
- W2799693458 sameAs 2799693458 @default.
- W2799693458 citedByCount "1" @default.
- W2799693458 countsByYear W27996934582020 @default.
- W2799693458 crossrefType "journal-article" @default.
- W2799693458 hasAuthorship W2799693458A5000210684 @default.
- W2799693458 hasAuthorship W2799693458A5004352908 @default.
- W2799693458 hasAuthorship W2799693458A5028263461 @default.
- W2799693458 hasAuthorship W2799693458A5052342522 @default.
- W2799693458 hasConcept C103278499 @default.
- W2799693458 hasConcept C106131492 @default.
- W2799693458 hasConcept C111919701 @default.
- W2799693458 hasConcept C115961682 @default.
- W2799693458 hasConcept C119857082 @default.
- W2799693458 hasConcept C124101348 @default.
- W2799693458 hasConcept C137800194 @default.
- W2799693458 hasConcept C154945302 @default.
- W2799693458 hasConcept C202444582 @default.
- W2799693458 hasConcept C31972630 @default.
- W2799693458 hasConcept C33923547 @default.
- W2799693458 hasConcept C41008148 @default.
- W2799693458 hasConcept C75684735 @default.
- W2799693458 hasConcept C9652623 @default.
- W2799693458 hasConcept C98045186 @default.
- W2799693458 hasConceptScore W2799693458C103278499 @default.
- W2799693458 hasConceptScore W2799693458C106131492 @default.
- W2799693458 hasConceptScore W2799693458C111919701 @default.
- W2799693458 hasConceptScore W2799693458C115961682 @default.
- W2799693458 hasConceptScore W2799693458C119857082 @default.
- W2799693458 hasConceptScore W2799693458C124101348 @default.
- W2799693458 hasConceptScore W2799693458C137800194 @default.
- W2799693458 hasConceptScore W2799693458C154945302 @default.
- W2799693458 hasConceptScore W2799693458C202444582 @default.
- W2799693458 hasConceptScore W2799693458C31972630 @default.
- W2799693458 hasConceptScore W2799693458C33923547 @default.
- W2799693458 hasConceptScore W2799693458C41008148 @default.
- W2799693458 hasConceptScore W2799693458C75684735 @default.
- W2799693458 hasConceptScore W2799693458C9652623 @default.
- W2799693458 hasConceptScore W2799693458C98045186 @default.
- W2799693458 hasIssue "4" @default.
- W2799693458 hasLocation W27996934581 @default.
- W2799693458 hasOpenAccess W2799693458 @default.
- W2799693458 hasPrimaryLocation W27996934581 @default.
- W2799693458 hasRelatedWork W2899084033 @default.
- W2799693458 hasRelatedWork W2961085424 @default.
- W2799693458 hasRelatedWork W3014300295 @default.
- W2799693458 hasRelatedWork W3046775127 @default.
- W2799693458 hasRelatedWork W3170094116 @default.
- W2799693458 hasRelatedWork W4285260836 @default.
- W2799693458 hasRelatedWork W4286629047 @default.
- W2799693458 hasRelatedWork W4306321456 @default.
- W2799693458 hasRelatedWork W4306674287 @default.
- W2799693458 hasRelatedWork W4224009465 @default.
- W2799693458 hasVolume "8" @default.
- W2799693458 isParatext "false" @default.
- W2799693458 isRetracted "false" @default.
- W2799693458 magId "2799693458" @default.
- W2799693458 workType "article" @default.