Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799697180> ?p ?o ?g. }
- W2799697180 endingPage "10" @default.
- W2799697180 startingPage "1" @default.
- W2799697180 abstract "Uttarakhand geothermal area, a part of Himalayan geothermal province, is one of the most important geothermal fields in India. Thermal springs at Tapoban and Badrinanth area are the most well studied ones among several thermal manifestations present in this area. Lumped parameter models are used in this study to calculate the mean residence time of the thermal fluids using tritium concentrations of both precipitation and thermal water. Piston flow model (PFM), exponential mixing model or well mixed model (EMM), exponential piston flow (EPM) and dispersion model (DM) are used to estimate the mean transit time (MTT) of the thermal fluids. TracerLPM (version 1), an interactive Excel® (2007 or later) workbook program, is employed to carry out this modelling procedure. Historical records of weighted mean tritium concentration of precipitation at New Delhi GNIP station (representative of the study area) acts as input concentration in modelling procedure. Missing values of tritium concentrations at New Delhi GNIP station are derived by comparing the available tritium concentration data with the tritium records at Ottawa GNIP station, Canada. Ratio between tritium values of the two GNIP stations (New Delhi and Ottawa) indicates that tritium concentration in Ottawa can be scaled by the factor of 0.41 to match with the tritium concentration at New Delhi GNIP station. Among different lumped parameter models, the simulated tritium output concentration derived from EPM and DM matches closely with the measured tritium concentration of the thermal springs. The estimated mean transit time of the Tapoban thermal water (THS) is found to be between 40 and 44 years whereas for Badrinath thermal water (BTHS) it ranges from 102 to 112 years. Both the models (EPM and DM) suggest that the aquifer feeding the Tapoban thermal water (THS) contains mixture of water flow paths i.e. combination of both exponential and piston flow, whereas aquifer feeding the Badrinanth thermal water (BTHS) mostly contains exponential mixing portion. Hydrodynamic dispersion is found to be higher in the Badrinath system compared to the Tapoban thermal water system." @default.
- W2799697180 created "2018-05-17" @default.
- W2799697180 creator A5014343819 @default.
- W2799697180 creator A5032072999 @default.
- W2799697180 creator A5038592140 @default.
- W2799697180 creator A5041726679 @default.
- W2799697180 creator A5076540360 @default.
- W2799697180 date "2018-07-01" @default.
- W2799697180 modified "2023-10-17" @default.
- W2799697180 title "Application of lumped parameter model to estimate mean transit time (MTT) of the thermal water using environmental tracer (3H): Insight from uttarakhand geothermal area (India)" @default.
- W2799697180 cites W1494156690 @default.
- W2799697180 cites W1585612743 @default.
- W2799697180 cites W1829782689 @default.
- W2799697180 cites W1963981892 @default.
- W2799697180 cites W1967014987 @default.
- W2799697180 cites W1971300620 @default.
- W2799697180 cites W1978336225 @default.
- W2799697180 cites W1980895656 @default.
- W2799697180 cites W1987288036 @default.
- W2799697180 cites W1987878192 @default.
- W2799697180 cites W2008874502 @default.
- W2799697180 cites W2010530729 @default.
- W2799697180 cites W2017911913 @default.
- W2799697180 cites W2021428395 @default.
- W2799697180 cites W2026396904 @default.
- W2799697180 cites W2032162302 @default.
- W2799697180 cites W2035733543 @default.
- W2799697180 cites W2040481060 @default.
- W2799697180 cites W2046137742 @default.
- W2799697180 cites W2074969709 @default.
- W2799697180 cites W2076207978 @default.
- W2799697180 cites W2083154625 @default.
- W2799697180 cites W2100630895 @default.
- W2799697180 cites W2107979199 @default.
- W2799697180 cites W2127226096 @default.
- W2799697180 cites W2146690155 @default.
- W2799697180 cites W2158722901 @default.
- W2799697180 cites W2222719575 @default.
- W2799697180 cites W2294402343 @default.
- W2799697180 cites W2336729790 @default.
- W2799697180 cites W2543005458 @default.
- W2799697180 cites W2751786539 @default.
- W2799697180 cites W1966604060 @default.
- W2799697180 doi "https://doi.org/10.1016/j.apgeochem.2018.04.013" @default.
- W2799697180 hasPublicationYear "2018" @default.
- W2799697180 type Work @default.
- W2799697180 sameAs 2799697180 @default.
- W2799697180 citedByCount "13" @default.
- W2799697180 countsByYear W27996971802019 @default.
- W2799697180 countsByYear W27996971802020 @default.
- W2799697180 countsByYear W27996971802021 @default.
- W2799697180 countsByYear W27996971802022 @default.
- W2799697180 countsByYear W27996971802023 @default.
- W2799697180 crossrefType "journal-article" @default.
- W2799697180 hasAuthorship W2799697180A5014343819 @default.
- W2799697180 hasAuthorship W2799697180A5032072999 @default.
- W2799697180 hasAuthorship W2799697180A5038592140 @default.
- W2799697180 hasAuthorship W2799697180A5041726679 @default.
- W2799697180 hasAuthorship W2799697180A5076540360 @default.
- W2799697180 hasConcept C111766609 @default.
- W2799697180 hasConcept C121332964 @default.
- W2799697180 hasConcept C127313418 @default.
- W2799697180 hasConcept C135691158 @default.
- W2799697180 hasConcept C146957229 @default.
- W2799697180 hasConcept C158739034 @default.
- W2799697180 hasConcept C164705383 @default.
- W2799697180 hasConcept C166957645 @default.
- W2799697180 hasConcept C185544564 @default.
- W2799697180 hasConcept C187320778 @default.
- W2799697180 hasConcept C205649164 @default.
- W2799697180 hasConcept C2778863792 @default.
- W2799697180 hasConcept C3019368741 @default.
- W2799697180 hasConcept C3020456351 @default.
- W2799697180 hasConcept C39432304 @default.
- W2799697180 hasConcept C62538594 @default.
- W2799697180 hasConcept C71924100 @default.
- W2799697180 hasConcept C76886044 @default.
- W2799697180 hasConcept C8058405 @default.
- W2799697180 hasConceptScore W2799697180C111766609 @default.
- W2799697180 hasConceptScore W2799697180C121332964 @default.
- W2799697180 hasConceptScore W2799697180C127313418 @default.
- W2799697180 hasConceptScore W2799697180C135691158 @default.
- W2799697180 hasConceptScore W2799697180C146957229 @default.
- W2799697180 hasConceptScore W2799697180C158739034 @default.
- W2799697180 hasConceptScore W2799697180C164705383 @default.
- W2799697180 hasConceptScore W2799697180C166957645 @default.
- W2799697180 hasConceptScore W2799697180C185544564 @default.
- W2799697180 hasConceptScore W2799697180C187320778 @default.
- W2799697180 hasConceptScore W2799697180C205649164 @default.
- W2799697180 hasConceptScore W2799697180C2778863792 @default.
- W2799697180 hasConceptScore W2799697180C3019368741 @default.
- W2799697180 hasConceptScore W2799697180C3020456351 @default.
- W2799697180 hasConceptScore W2799697180C39432304 @default.
- W2799697180 hasConceptScore W2799697180C62538594 @default.
- W2799697180 hasConceptScore W2799697180C71924100 @default.
- W2799697180 hasConceptScore W2799697180C76886044 @default.
- W2799697180 hasConceptScore W2799697180C8058405 @default.
- W2799697180 hasLocation W27996971801 @default.