Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799908815> ?p ?o ?g. }
- W2799908815 endingPage "742" @default.
- W2799908815 startingPage "733" @default.
- W2799908815 abstract "Abstract Objectives Genetic risks for cognitive decline are not modifiable; however their relative importance compared to modifiable factors is unclear. We used machine learning to evaluate modifiable and genetic risk factors for Alzheimer’s disease (AD), to predict cognitive decline. Methods Health and Retirement Study participants, aged 65–90 years, with DNA and >2 cognitive evaluations, were included (n = 7,142). Predictors included age, body mass index, gender, education, APOE ε4, cardiovascular, hypertension, diabetes, stroke, neighborhood socioeconomic status (NSES), and AD risk genes. Latent class trajectory analyses of cognitive scores determined the form and number of classes. Random Forests (RF) classification investigated predictors of cognitive trajectories. Performance metrics (accuracy, sensitivity, and specificity) were reported. Results Three classes were identified. Discriminating highest from lowest classes produced the best RF performance: accuracy = 78% (1.0%), sensitivity = 75% (1.0%), and specificity = 81% (1.0%). Top ranked predictors were education, age, gender, stroke, NSES, and diabetes, APOE ε4 carrier status, and body mass index (BMI). When discriminating high from medium classes, top predictors were education, age, gender, stroke, diabetes, NSES, and BMI. When discriminating medium from the low classes, education, NSES, age, diabetes, and stroke were top predictors. Discussion The combination of latent trajectories and RF classification techniques suggested that nongenetic factors contribute more to cognitive decline than genetic factors. Education was the most relevant predictor for discrimination." @default.
- W2799908815 created "2018-05-17" @default.
- W2799908815 creator A5002154844 @default.
- W2799908815 creator A5017739729 @default.
- W2799908815 creator A5023816495 @default.
- W2799908815 creator A5035472137 @default.
- W2799908815 creator A5041394039 @default.
- W2799908815 creator A5082869062 @default.
- W2799908815 date "2018-04-27" @default.
- W2799908815 modified "2023-10-04" @default.
- W2799908815 title "Investigating Predictors of Cognitive Decline Using Machine Learning" @default.
- W2799908815 cites W1576923615 @default.
- W2799908815 cites W1607630330 @default.
- W2799908815 cites W1847168837 @default.
- W2799908815 cites W1871783318 @default.
- W2799908815 cites W1980029018 @default.
- W2799908815 cites W1984052255 @default.
- W2799908815 cites W1992841111 @default.
- W2799908815 cites W1993526839 @default.
- W2799908815 cites W1994682164 @default.
- W2799908815 cites W1999864873 @default.
- W2799908815 cites W2008854521 @default.
- W2799908815 cites W2017079501 @default.
- W2799908815 cites W2027696889 @default.
- W2799908815 cites W2029509511 @default.
- W2799908815 cites W2034937783 @default.
- W2799908815 cites W2042240757 @default.
- W2799908815 cites W2045074720 @default.
- W2799908815 cites W2051063043 @default.
- W2799908815 cites W2052792956 @default.
- W2799908815 cites W2055885841 @default.
- W2799908815 cites W2058161128 @default.
- W2799908815 cites W2070230130 @default.
- W2799908815 cites W2070734601 @default.
- W2799908815 cites W2091374137 @default.
- W2799908815 cites W2098706789 @default.
- W2799908815 cites W2104855192 @default.
- W2799908815 cites W2107577790 @default.
- W2799908815 cites W2115779804 @default.
- W2799908815 cites W2125740150 @default.
- W2799908815 cites W2126344439 @default.
- W2799908815 cites W2128067243 @default.
- W2799908815 cites W2129621582 @default.
- W2799908815 cites W2132674474 @default.
- W2799908815 cites W2134243884 @default.
- W2799908815 cites W2137330720 @default.
- W2799908815 cites W2140031808 @default.
- W2799908815 cites W2140502052 @default.
- W2799908815 cites W2142514276 @default.
- W2799908815 cites W2143481518 @default.
- W2799908815 cites W2144907160 @default.
- W2799908815 cites W2148080316 @default.
- W2799908815 cites W2150179643 @default.
- W2799908815 cites W2155400471 @default.
- W2799908815 cites W2161706914 @default.
- W2799908815 cites W2162389558 @default.
- W2799908815 cites W2167311298 @default.
- W2799908815 cites W2197671812 @default.
- W2799908815 cites W2257914755 @default.
- W2799908815 cites W2560253647 @default.
- W2799908815 cites W2566267175 @default.
- W2799908815 cites W2586305624 @default.
- W2799908815 cites W2611864942 @default.
- W2799908815 cites W2911964244 @default.
- W2799908815 cites W840079847 @default.
- W2799908815 doi "https://doi.org/10.1093/geronb/gby054" @default.
- W2799908815 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7205421" @default.
- W2799908815 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29718387" @default.
- W2799908815 hasPublicationYear "2018" @default.
- W2799908815 type Work @default.
- W2799908815 sameAs 2799908815 @default.
- W2799908815 citedByCount "32" @default.
- W2799908815 countsByYear W27999088152019 @default.
- W2799908815 countsByYear W27999088152020 @default.
- W2799908815 countsByYear W27999088152021 @default.
- W2799908815 countsByYear W27999088152022 @default.
- W2799908815 countsByYear W27999088152023 @default.
- W2799908815 crossrefType "journal-article" @default.
- W2799908815 hasAuthorship W2799908815A5002154844 @default.
- W2799908815 hasAuthorship W2799908815A5017739729 @default.
- W2799908815 hasAuthorship W2799908815A5023816495 @default.
- W2799908815 hasAuthorship W2799908815A5035472137 @default.
- W2799908815 hasAuthorship W2799908815A5041394039 @default.
- W2799908815 hasAuthorship W2799908815A5082869062 @default.
- W2799908815 hasBestOaLocation W27999088151 @default.
- W2799908815 hasConcept C118552586 @default.
- W2799908815 hasConcept C119857082 @default.
- W2799908815 hasConcept C126322002 @default.
- W2799908815 hasConcept C127413603 @default.
- W2799908815 hasConcept C134018914 @default.
- W2799908815 hasConcept C147077947 @default.
- W2799908815 hasConcept C15744967 @default.
- W2799908815 hasConcept C169900460 @default.
- W2799908815 hasConcept C2779134260 @default.
- W2799908815 hasConcept C2779483572 @default.
- W2799908815 hasConcept C2780221984 @default.
- W2799908815 hasConcept C2780645631 @default.
- W2799908815 hasConcept C2908647359 @default.