Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799908932> ?p ?o ?g. }
- W2799908932 endingPage "252" @default.
- W2799908932 startingPage "252" @default.
- W2799908932 abstract "Many biophysical forest properties such as wood volume and leaf area index (LAI) require prior knowledge on either photosynthetic or non-photosynthetic components. Laser scanning appears to be a helpful technique in nondestructively quantifying forest structures, as it can acquire an accurate three-dimensional point cloud of objects. In this study, we propose an unsupervised geometry-based method named Dynamic Segment Merging (DSM) to identify non-photosynthetic components of trees by semantically segmenting tree point clouds, and examining the linear shape prior of each resulting segment. We tested our method using one single tree dataset and four plot-level datasets, and compared our results to a supervised machine learning method. We further demonstrated that by using an optimal neighborhood selection method that involves multi-scale analysis, the results were improved. Our results showed that the overall accuracy ranged from 81.8% to 92.0% with an average value of 87.7%. The supervised machine learning method had an average overall accuracy of 86.4% for all datasets, on account of a collection of manually delineated representative training data. Our study indicates that separating tree photosynthetic and non-photosynthetic components from laser scanning data can be achieved in a fully unsupervised manner without the need of training data and user intervention." @default.
- W2799908932 created "2018-05-17" @default.
- W2799908932 creator A5002540574 @default.
- W2799908932 creator A5003870232 @default.
- W2799908932 creator A5021486858 @default.
- W2799908932 creator A5024904329 @default.
- W2799908932 creator A5025553015 @default.
- W2799908932 creator A5081275712 @default.
- W2799908932 creator A5085440681 @default.
- W2799908932 date "2018-05-05" @default.
- W2799908932 modified "2023-10-01" @default.
- W2799908932 title "Separating Tree Photosynthetic and Non-Photosynthetic Components from Point Cloud Data Using Dynamic Segment Merging" @default.
- W2799908932 cites W1969434292 @default.
- W2799908932 cites W1982782867 @default.
- W2799908932 cites W1985908905 @default.
- W2799908932 cites W1986104804 @default.
- W2799908932 cites W1993457928 @default.
- W2799908932 cites W1996705598 @default.
- W2799908932 cites W1998138537 @default.
- W2799908932 cites W2025175430 @default.
- W2799908932 cites W2028290485 @default.
- W2799908932 cites W2030080266 @default.
- W2799908932 cites W2057895495 @default.
- W2799908932 cites W2062883956 @default.
- W2799908932 cites W2067191022 @default.
- W2799908932 cites W2080105829 @default.
- W2799908932 cites W2086461898 @default.
- W2799908932 cites W2089915976 @default.
- W2799908932 cites W2096579040 @default.
- W2799908932 cites W2097164998 @default.
- W2799908932 cites W2099346911 @default.
- W2799908932 cites W2102228204 @default.
- W2799908932 cites W2113748593 @default.
- W2799908932 cites W2123576693 @default.
- W2799908932 cites W2136245122 @default.
- W2799908932 cites W2137882837 @default.
- W2799908932 cites W2137918794 @default.
- W2799908932 cites W2140868313 @default.
- W2799908932 cites W2140940625 @default.
- W2799908932 cites W2151647593 @default.
- W2799908932 cites W2161491521 @default.
- W2799908932 cites W2166885414 @default.
- W2799908932 cites W2223657480 @default.
- W2799908932 cites W2245444544 @default.
- W2799908932 cites W2280788228 @default.
- W2799908932 cites W2408835236 @default.
- W2799908932 cites W2436494909 @default.
- W2799908932 cites W2510495238 @default.
- W2799908932 cites W2555132450 @default.
- W2799908932 cites W2558383552 @default.
- W2799908932 cites W2570251256 @default.
- W2799908932 cites W2588973786 @default.
- W2799908932 cites W2609747629 @default.
- W2799908932 cites W2745330545 @default.
- W2799908932 cites W2754470632 @default.
- W2799908932 cites W2756418563 @default.
- W2799908932 cites W2769416190 @default.
- W2799908932 cites W2788190553 @default.
- W2799908932 cites W2794248050 @default.
- W2799908932 cites W2911964244 @default.
- W2799908932 cites W2963809831 @default.
- W2799908932 cites W4235587621 @default.
- W2799908932 doi "https://doi.org/10.3390/f9050252" @default.
- W2799908932 hasPublicationYear "2018" @default.
- W2799908932 type Work @default.
- W2799908932 sameAs 2799908932 @default.
- W2799908932 citedByCount "29" @default.
- W2799908932 countsByYear W27999089322019 @default.
- W2799908932 countsByYear W27999089322020 @default.
- W2799908932 countsByYear W27999089322021 @default.
- W2799908932 countsByYear W27999089322022 @default.
- W2799908932 countsByYear W27999089322023 @default.
- W2799908932 crossrefType "journal-article" @default.
- W2799908932 hasAuthorship W2799908932A5002540574 @default.
- W2799908932 hasAuthorship W2799908932A5003870232 @default.
- W2799908932 hasAuthorship W2799908932A5021486858 @default.
- W2799908932 hasAuthorship W2799908932A5024904329 @default.
- W2799908932 hasAuthorship W2799908932A5025553015 @default.
- W2799908932 hasAuthorship W2799908932A5081275712 @default.
- W2799908932 hasAuthorship W2799908932A5085440681 @default.
- W2799908932 hasBestOaLocation W27999089321 @default.
- W2799908932 hasConcept C113174947 @default.
- W2799908932 hasConcept C119857082 @default.
- W2799908932 hasConcept C120665830 @default.
- W2799908932 hasConcept C121332964 @default.
- W2799908932 hasConcept C124101348 @default.
- W2799908932 hasConcept C127313418 @default.
- W2799908932 hasConcept C131979681 @default.
- W2799908932 hasConcept C134306372 @default.
- W2799908932 hasConcept C141349535 @default.
- W2799908932 hasConcept C153180895 @default.
- W2799908932 hasConcept C154945302 @default.
- W2799908932 hasConcept C33923547 @default.
- W2799908932 hasConcept C41008148 @default.
- W2799908932 hasConcept C520434653 @default.
- W2799908932 hasConcept C62649853 @default.
- W2799908932 hasConceptScore W2799908932C113174947 @default.
- W2799908932 hasConceptScore W2799908932C119857082 @default.