Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799969407> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2799969407 abstract "Machine learning models have gained popularity of realizing Electrocardiography (ECG) monitoring systems. For constructing an inference device, providing both low latency and high accuracy is of a great concern. Extreme Learning Machine (ELM) is a single layer neural network that provides an effective solution for fast inference. In addition, the use of Adaptive Boosting (AdaBoost) algorithm can aggregate ELMs to enhance the overall learning ability. However, these computing units may encounter reliability issues that result from CMOS technology scaling and lead to a severe decline in performance. Hence, improving error resilience for a machine learning engine becomes a new design issue. This work presents a reliability-aware scheme for AdaBoost-based ELM. By exploiting the inherent redundancy in AdaBoost algorithm, it can strengthen the combination between different ELM classifiers. In an ECG-based atrial fibrillation detection case, the experimental results show that the proposed method can restore 71.4% of accuracy degradation caused by injected random bit-flip rate of 4 × 10−4 in computing units with small computational overhead. The classification engine is synthesized by TSMC 40nm CMOS technology, which can achieve extremely high classification rate." @default.
- W2799969407 created "2018-05-17" @default.
- W2799969407 creator A5011949928 @default.
- W2799969407 creator A5065278736 @default.
- W2799969407 date "2018-05-01" @default.
- W2799969407 modified "2023-09-24" @default.
- W2799969407 title "Error-Resilient Reconfigurable Boosting Extreme Learning Machine for ECG Telemonitoring Systems" @default.
- W2799969407 cites W1603076440 @default.
- W2799969407 cites W1964632160 @default.
- W2799969407 cites W1973695593 @default.
- W2799969407 cites W1998841124 @default.
- W2799969407 cites W2041970641 @default.
- W2799969407 cites W2100968522 @default.
- W2799969407 cites W2120185818 @default.
- W2799969407 cites W2134603844 @default.
- W2799969407 cites W2151802820 @default.
- W2799969407 cites W2346303648 @default.
- W2799969407 cites W4243524625 @default.
- W2799969407 cites W4297944103 @default.
- W2799969407 cites W2042456747 @default.
- W2799969407 doi "https://doi.org/10.1109/iscas.2018.8350948" @default.
- W2799969407 hasPublicationYear "2018" @default.
- W2799969407 type Work @default.
- W2799969407 sameAs 2799969407 @default.
- W2799969407 citedByCount "7" @default.
- W2799969407 countsByYear W27999694072018 @default.
- W2799969407 countsByYear W27999694072019 @default.
- W2799969407 countsByYear W27999694072020 @default.
- W2799969407 countsByYear W27999694072021 @default.
- W2799969407 crossrefType "proceedings-article" @default.
- W2799969407 hasAuthorship W2799969407A5011949928 @default.
- W2799969407 hasAuthorship W2799969407A5065278736 @default.
- W2799969407 hasConcept C108583219 @default.
- W2799969407 hasConcept C119857082 @default.
- W2799969407 hasConcept C12267149 @default.
- W2799969407 hasConcept C141404830 @default.
- W2799969407 hasConcept C154945302 @default.
- W2799969407 hasConcept C2780150128 @default.
- W2799969407 hasConcept C41008148 @default.
- W2799969407 hasConcept C46686674 @default.
- W2799969407 hasConcept C50644808 @default.
- W2799969407 hasConceptScore W2799969407C108583219 @default.
- W2799969407 hasConceptScore W2799969407C119857082 @default.
- W2799969407 hasConceptScore W2799969407C12267149 @default.
- W2799969407 hasConceptScore W2799969407C141404830 @default.
- W2799969407 hasConceptScore W2799969407C154945302 @default.
- W2799969407 hasConceptScore W2799969407C2780150128 @default.
- W2799969407 hasConceptScore W2799969407C41008148 @default.
- W2799969407 hasConceptScore W2799969407C46686674 @default.
- W2799969407 hasConceptScore W2799969407C50644808 @default.
- W2799969407 hasLocation W27999694071 @default.
- W2799969407 hasOpenAccess W2799969407 @default.
- W2799969407 hasPrimaryLocation W27999694071 @default.
- W2799969407 hasRelatedWork W1987859285 @default.
- W2799969407 hasRelatedWork W1996541855 @default.
- W2799969407 hasRelatedWork W2031041969 @default.
- W2799969407 hasRelatedWork W2045361370 @default.
- W2799969407 hasRelatedWork W2051854463 @default.
- W2799969407 hasRelatedWork W2295628041 @default.
- W2799969407 hasRelatedWork W2475251269 @default.
- W2799969407 hasRelatedWork W2905251838 @default.
- W2799969407 hasRelatedWork W2969890106 @default.
- W2799969407 hasRelatedWork W3134233996 @default.
- W2799969407 isParatext "false" @default.
- W2799969407 isRetracted "false" @default.
- W2799969407 magId "2799969407" @default.
- W2799969407 workType "article" @default.