Matches in SemOpenAlex for { <https://semopenalex.org/work/W2799987449> ?p ?o ?g. }
- W2799987449 endingPage "1131" @default.
- W2799987449 startingPage "1114" @default.
- W2799987449 abstract "Cholesterol is required for maintenance of plasma membrane fluidity and integrity and for many cellular functions. Cellular cholesterol can be obtained from lipoproteins in a selective pathway of HDL-cholesteryl ester (CE) uptake without parallel apolipoprotein uptake. Scavenger receptor B type 1 (SR-B1) is a cell surface HDL receptor that mediates HDL-CE uptake. It is most abundantly expressed in liver, where it provides cholesterol for bile acid synthesis, and in steroidogenic tissues, where it delivers cholesterol needed for storage or steroidogenesis in rodents. SR-B1 transcription is regulated by trophic hormones in the adrenal gland, ovary, and testis; in the liver and elsewhere, SR-B1 is subject to posttranscriptional and posttranslational regulation. SR-B1 operates in several metabolic processes and contributes to pathogenesis of atherosclerosis, inflammation, hepatitis C virus infection, and other conditions. Here, we summarize characteristics of the selective uptake pathway and involvement of microvillar channels as facilitators of selective HDL-CE uptake. We also present the potential mechanisms of SR-B1-mediated selective cholesterol transport; the transcriptional, posttranscriptional, and posttranslational regulation of SR-B1; and the impact of gene variants on expression and function of human SR-B1. A better understanding of this unique pathway and SR-B1's role may yield improved therapies for a wide variety of conditions. Cholesterol is required for maintenance of plasma membrane fluidity and integrity and for many cellular functions. Cellular cholesterol can be obtained from lipoproteins in a selective pathway of HDL-cholesteryl ester (CE) uptake without parallel apolipoprotein uptake. Scavenger receptor B type 1 (SR-B1) is a cell surface HDL receptor that mediates HDL-CE uptake. It is most abundantly expressed in liver, where it provides cholesterol for bile acid synthesis, and in steroidogenic tissues, where it delivers cholesterol needed for storage or steroidogenesis in rodents. SR-B1 transcription is regulated by trophic hormones in the adrenal gland, ovary, and testis; in the liver and elsewhere, SR-B1 is subject to posttranscriptional and posttranslational regulation. SR-B1 operates in several metabolic processes and contributes to pathogenesis of atherosclerosis, inflammation, hepatitis C virus infection, and other conditions. Here, we summarize characteristics of the selective uptake pathway and involvement of microvillar channels as facilitators of selective HDL-CE uptake. We also present the potential mechanisms of SR-B1-mediated selective cholesterol transport; the transcriptional, posttranscriptional, and posttranslational regulation of SR-B1; and the impact of gene variants on expression and function of human SR-B1. A better understanding of this unique pathway and SR-B1's role may yield improved therapies for a wide variety of conditions. Cholesterol is required for the maintenance of plasma membrane fluidity and integrity, as well as many cellular functions. Tissues such as liver, adrenal gland, and gonads have a special requirement for cholesterol, which is used as a substrate for product biosynthesis (1.Russell D.W. Fifty years of advances in bile acid synthesis and metabolism.J. Lipid Res. 2009; 50: S120-S125Abstract Full Text Full Text PDF PubMed Scopus (196) Google Scholar, 2.Miller W.L. Early steps in steroidogenesis: intracellular cholesterol trafficking.J. Lipid Res. 2011; 52: 2111-2135Abstract Full Text Full Text PDF PubMed Scopus (286) Google Scholar). In many species, this cholesterol is obtained from plasma lipoproteins by a unique pathway in which circulating lipoproteins bind to the surface of the biosynthetic cells and contribute their cholesteryl esters (CEs) to the cells by a process known as the “selective” cholesterol uptake pathway (3.Glass C. Pittman R.C. Weinstein D.B. Steinberg D. Dissociation of tissue uptake of cholesterol ester from that of apoprotein A-I of rat plasma high density lipoprotein: selective delivery of cholesterol ester to liver, adrenal, and gonad.Proc. Natl. Acad. Sci. USA. 1983; 80: 5435-5439Crossref PubMed Google Scholar). This pathway differs from the classic endocytic LDL receptor pathway (4.Brown M.S. Goldstein J.L. A receptor-mediated pathway for cholesterol homeostasis.Science. 1986; 232: 34-47Crossref PubMed Google Scholar) in that CEs, predominantly contained within HDL, are taken into the cell without the uptake and lysosomal degradation of the HDL particle itself (3.Glass C. Pittman R.C. Weinstein D.B. Steinberg D. Dissociation of tissue uptake of cholesterol ester from that of apoprotein A-I of rat plasma high density lipoprotein: selective delivery of cholesterol ester to liver, adrenal, and gonad.Proc. Natl. Acad. Sci. USA. 1983; 80: 5435-5439Crossref PubMed Google Scholar, 5.Quarfordt S. Hanks J. Jones R.S. Shelburne F. The uptake of high density lipoprotein cholesteryl ester in the perfused rat liver.J. Biol. Chem. 1980; 255: 2934-2937Abstract Full Text PDF PubMed Google Scholar, 6.Reaven E. Chen Y.D. Spicher M. Azhar S. Morphological evidence that high density lipoproteins are not internalized by steroid-producing cells during in situ organ perfusion.J. Clin. Invest. 1984; 74: 1384-1397Crossref PubMed Google Scholar, 7.Glass C. Pittman R.C. Civen M. Steinberg D. Uptake of high-density lipoprotein-associated apoprotein A-I and cholesterol esters by 16 tissues of the rat in vivo and by adrenal cells and hepatocytes in vitro.J. Biol. Chem. 1985; 260: 744-750Abstract Full Text PDF PubMed Google Scholar, 8.Reaven E. Chen Y.D. Spicher M. Hwang S.F. Mondon C.E. Azhar S. Uptake of low density lipoproteins by rat tissues. Special emphasis on the luteinized ovary.J. Clin. Invest. 1986; 77: 1971-1984Crossref PubMed Google Scholar, 9.Azhar S. Stewart D. Reaven E. Utilization of cholesterol-rich lipoproteins by perfused rat adrenals.J. Lipid Res. 1989; 30: 1799-1810Abstract Full Text PDF PubMed Google Scholar, 10.Stein Y. Dabach Y. Hollander G. Halperin G. Stein O. Metabolism of HDL-cholesteryl ester in the rat, studied with a nonhydrolyzable analog, cholesteryl linoleyl ether.Biochim. Biophys. Acta. 1983; 752: 98-105Crossref PubMed Scopus (136) Google Scholar). As described, the selective pathway is a high-capacity physiologically regulated bulk-cholesterol delivery system operating in steroidogenic tissues of a variety of animals to selectively internalize cholesterol to produce steroid hormones (11.Gwynne J.T. Mahaffee D.D. Rat adrenal uptake and metabolism of high density lipoprotein cholesteryl ester.J. Biol. Chem. 1989; 264: 8141-8150Abstract Full Text PDF PubMed Google Scholar, 12.Azhar S. Nomoto A. Leers-Sucheta S. Reaven E. Simultaneous induction of an HDL receptor protein (SR-BI) and the selective uptake of HDL-cholesteryl esters in a physiologically relevant steroidogenic cell model.J. Lipid Res. 1998; 39: 1616-1628Abstract Full Text Full Text PDF PubMed Google Scholar, 13.Azhar S. Tsai L. Medicherla S. Chandrasekher Y. Giudice L. Reaven E. Human granulosa cells use high density lipoprotein cholesterol for steroidogenesis.J. Clin. Endocrinol. Metab. 1998; 83: 983-991Crossref PubMed Scopus (81) Google Scholar, 14.Reaven E. Zhan L. Nomoto A. Leers-Sucheta S. Azhar S. Expression and microvillar localization of scavenger receptor class B, type I (SR-BI) and selective cholesteryl ester uptake in Leydig cells from rat testis.J. Lipid Res. 2000; 41: 343-356Abstract Full Text Full Text PDF PubMed Google Scholar), and in the liver to mediate the transfer of cholesterol into bile and provide cholesterol for bile acid production (15.Scobey M.W. Johnson F.L. Rudel L.L. Delivery of high-density lipoprotein free and esterified cholesterol to bile by the perfused monkey liver.Am. J. Physiol. 1989; 257: G644-G652PubMed Google Scholar, 16.Pieters M.N. Schouten D. Bakkeren H.F. Esbach B. Brouwer A. Knook D.L. van Berkel T.J. Selective uptake of cholesteryl esters from apolipoprotein-E-free high-density lipoproteins by rat parenchymal cells in vivo is efficiently coupled to bile acid synthesis.Biochem. J. 1991; 280: 359-365Crossref PubMed Scopus (56) Google Scholar, 17.Fluiter K. Vietsch H. Biessen E.A. Kostner G.M. van Berkel T.J. Sattler W. Increased selective uptake in vivo and in vitro of oxidized cholesteryl esters from high-density lipoprotein by rat liver parenchymal cells.Biochem. J. 1996; 319: 471-476Crossref PubMed Scopus (39) Google Scholar, 18.Guertin F. Brunet S. Lairon D. Levy E. Oxidative tyrosylation of high density lipoprotein impairs biliary sterol secretion in rats.Atherosclerosis. 1997; 131: 35-41Abstract Full Text Full Text PDF PubMed Scopus (12) Google Scholar). The selective pathway also operates in isolated hepatocytes (7.Glass C. Pittman R.C. Civen M. Steinberg D. Uptake of high-density lipoprotein-associated apoprotein A-I and cholesterol esters by 16 tissues of the rat in vivo and by adrenal cells and hepatocytes in vitro.J. Biol. Chem. 1985; 260: 744-750Abstract Full Text PDF PubMed Google Scholar, 19.Pittman R.C. Glass C.K. Atkinson D. Small D.M. Synthetic high density lipoprotein particles. Application to studies of the apoprotein specificity for selective uptake of cholesterol esters.J. Biol. Chem. 1987; 262: 2435-2442Abstract Full Text PDF PubMed Google Scholar, 20.Rinninger F. Kaiser T. Windler E. Greten H. Fruchart J.C. Castro G. Selective uptake of cholesteryl esters from high-density lipoprotein-derived LpA-I and LpA-I:A-II particles by hepatic cells in culture.Biochim. Biophys. Acta. 1998; 1393: 277-291Crossref PubMed Scopus (33) Google Scholar), fibroblasts (19.Pittman R.C. Glass C.K. Atkinson D. Small D.M. Synthetic high density lipoprotein particles. Application to studies of the apoprotein specificity for selective uptake of cholesterol esters.J. Biol. Chem. 1987; 262: 2435-2442Abstract Full Text PDF PubMed Google Scholar, 20.Rinninger F. Kaiser T. Windler E. Greten H. Fruchart J.C. Castro G. Selective uptake of cholesteryl esters from high-density lipoprotein-derived LpA-I and LpA-I:A-II particles by hepatic cells in culture.Biochim. Biophys. Acta. 1998; 1393: 277-291Crossref PubMed Scopus (33) Google Scholar), adipocytes (21.Despres J.P. Fong B.S. Jimenez J. Julien P. Angel A. Selective uptake of HDL cholesterol ester by human fat cells.Am. J. Physiol. 1988; 254: E667-E675PubMed Google Scholar, 22.Schorsch F. Malle E. Sattler W. Selective uptake of high density lipoprotein-associated cholesterylesters by differentiated Ob1771 adipocytes is modulated by endogenous and exogenous lipoprotein lipase.FEBS Lett. 1997; 414: 507-513Crossref PubMed Scopus (0) Google Scholar), macrophages (23.Stein O. Israeli A. Leitersdorf E. Halperin G. Stein Y. Preferential uptake of cholesteryl ester-HDL by cultured macrophages.Atherosclerosis. 1987; 65: 151-158Abstract Full Text PDF PubMed Google Scholar, 24.Rinninger F. Deichen J.T. Jackle S. Windler E. Greten H. Selective uptake of high-density lipoprotein-associated cholesteryl esters and high-density lipoprotein particle uptake by human monocyte-macrophages.Atherosclerosis. 1994; 105: 145-157Abstract Full Text PDF PubMed Scopus (14) Google Scholar), and adrenal (7.Glass C. Pittman R.C. Civen M. Steinberg D. Uptake of high-density lipoprotein-associated apoprotein A-I and cholesterol esters by 16 tissues of the rat in vivo and by adrenal cells and hepatocytes in vitro.J. Biol. Chem. 1985; 260: 744-750Abstract Full Text PDF PubMed Google Scholar, 11.Gwynne J.T. Mahaffee D.D. Rat adrenal uptake and metabolism of high density lipoprotein cholesteryl ester.J. Biol. Chem. 1989; 264: 8141-8150Abstract Full Text PDF PubMed Google Scholar, 19.Pittman R.C. Glass C.K. Atkinson D. Small D.M. Synthetic high density lipoprotein particles. Application to studies of the apoprotein specificity for selective uptake of cholesterol esters.J. Biol. Chem. 1987; 262: 2435-2442Abstract Full Text PDF PubMed Google Scholar, 25.Leitersdorf E. Israeli A. Stein O. Eisenberg S. Stein Y. The role of apolipoproteins of HDL in the selective uptake of cholesteryl linoleyl ether by cultured rat and bovine adrenal cells.Biochim. Biophys. Acta. 1986; 878: 320-329Crossref PubMed Google Scholar), ovarian (12.Azhar S. Nomoto A. Leers-Sucheta S. Reaven E. Simultaneous induction of an HDL receptor protein (SR-BI) and the selective uptake of HDL-cholesteryl esters in a physiologically relevant steroidogenic cell model.J. Lipid Res. 1998; 39: 1616-1628Abstract Full Text Full Text PDF PubMed Google Scholar, 13.Azhar S. Tsai L. Medicherla S. Chandrasekher Y. Giudice L. Reaven E. Human granulosa cells use high density lipoprotein cholesterol for steroidogenesis.J. Clin. Endocrinol. Metab. 1998; 83: 983-991Crossref PubMed Scopus (81) Google Scholar) and testicular Leydig (14.Reaven E. Zhan L. Nomoto A. Leers-Sucheta S. Azhar S. Expression and microvillar localization of scavenger receptor class B, type I (SR-BI) and selective cholesteryl ester uptake in Leydig cells from rat testis.J. Lipid Res. 2000; 41: 343-356Abstract Full Text Full Text PDF PubMed Google Scholar) cells, though its function in fibroblasts is less clear. Scavenger receptor B type 1 (SR-B1) is the physiologically relevant cell surface HDL receptor responsible for selective HDL-CE uptake (26.Acton S. Rigotti A. Landschulz K.T. Xu S. Hobbs H.H. Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor.Science. 1996; 271: 518-520Crossref PubMed Google Scholar). The SR-B1 gene (Scarb1) was almost simultaneously cloned as a cluster determinant 36 (CD36)-related class B scavenger receptor by expression cloning using cDNA libraries from a Chinese hamster ovary (CHO) cell line, Var-261, with a mutated LDL receptor gene (27.Acton S.L. Scherer P.E. Lodish H.F. Krieger M. Expression cloning of SR-BI, a CD36-related class B scavenger receptor.J. Biol. Chem. 1994; 269: 21003-21009Abstract Full Text PDF PubMed Google Scholar), and as CD36 and lysosomal integral membrane protein (LIMP) II analogous-I (CLA-1) from human erythroleukemia (HEL) cells based on its sequence similarity to CD36 and LIMP-2 (28.Calvo D. Vega M.A. Identification, primary structure, and distribution of CLA-1, a novel member of the CD36/LIMPII gene family.J. Biol. Chem. 1993; 268: 18929-18935Abstract Full Text PDF PubMed Google Scholar). CLA-1 is a human homolog of SR-B1. Subsequently, the isolation and characterization of SR-B1 from mouse (26.Acton S. Rigotti A. Landschulz K.T. Xu S. Hobbs H.H. Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor.Science. 1996; 271: 518-520Crossref PubMed Google Scholar), rat (29.Mizutani T. Sonoda Y. Minegishi T. Wakabayashi K. Miyamoto K. Cloning, characterization, and cellular distribution of rat scavenger receptor class B type I (SRBI) in the ovary.Biochem. Biophys. Res. Commun. 1997; 234: 499-505Crossref PubMed Scopus (47) Google Scholar), rabbit (30.Ritsch A. Tancevski I. Schgoer W. Pfeifhofer C. Gander R. Eller P. Foeger B. Stanzl U. Patsch J.R. Molecular characterization of rabbit scavenger receptor class B types I and II: portal to central vein gradient of expression in the liver.J. Lipid Res. 2004; 45: 214-222Abstract Full Text Full Text PDF PubMed Scopus (22) Google Scholar), pig (31.Kim J.G. Vallet J.L. Nonneman D. Christenson R.K. Molecular cloning and endometrial expression of porcine high density lipoprotein receptor SR-BI during the estrous cycle and early pregnancy.Mol. Cell. Endocrinol. 2004; 222: 105-112Crossref PubMed Scopus (9) Google Scholar), cow (32.Rajapaksha W.R. McBride M. Robertson L. O'Shaughnessy P.J. Sequence of the bovine HDL-receptor (SR-BI) cDNA and changes in receptor mRNA expression during granulosa cell luteinization in vivo and in vitro.Mol. Cell. Endocrinol. 1997; 134: 59-67Crossref PubMed Scopus (43) Google Scholar), and Northern tree shrew (33.Tong Y. Zhu Y. Xia X. Liu Y. Feng Y. Hua X. Chen Z. Ding H. Gao L. Wang Y. et al.Tupaia CD81, SR-BI, claudin-1, and occludin support hepatitis C virus infection.J. Virol. 2011; 85: 2793-2802Crossref PubMed Scopus (56) Google Scholar) have been described. Further studies by Monty Krieger's group revealed that SR-B1 binds HDL and mediates the selective delivery of HDL-CE (26.Acton S. Rigotti A. Landschulz K.T. Xu S. Hobbs H.H. Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor.Science. 1996; 271: 518-520Crossref PubMed Google Scholar). This led to identification of SR-B1 as the first bona fide HDL receptor (26.Acton S. Rigotti A. Landschulz K.T. Xu S. Hobbs H.H. Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor.Science. 1996; 271: 518-520Crossref PubMed Google Scholar). SR-B1 is a member of the class B family of scavenger receptors, which is also known as the CD36 superfamily of scavenger receptors, which are plasma membrane receptors that recognize and take up macromolecules that have a negative charge. Although classified as a group, the scavenger receptor family members are structurally heterogeneous; specifically, the scavenger receptor B family members have a very different molecular structure from other scavenger receptors by having two transmembrane domains with both the N and C termini of the proteins residing intracellularly (34.PrabhuDas M.R. Baldwin C.L. Bollyky P.L. Bowdish D.M.E. Drickamer K. Febbraio M. Herz J. Kobzik L. Krieger M. Loike J. et al.A consensus definitive classification of scavenger receptors and their roles in health and disease.J. Immunol. 2017; 198: 3775-3789Crossref PubMed Scopus (100) Google Scholar). Proteins in this group are cell surface-associated glycoproteins, which include SR-B1 and its splicing variant, SR-B2 (SR-BII), its human homolog, CLA-1/human SR-B1, and spliced variant, CLA-2/human SR-B2, CD36, and LIMP-2 (35.Calvo D. Dopazo J. Vega M.A. The CD36, CLA-1 (CD36L1), and LIMPII (CD36L2) gene family: cellular distribution, chromosomal location, and genetic evolution.Genomics. 1995; 25: 100-106Crossref PubMed Scopus (101) Google Scholar, 36.Webb N.R. de Villiers W.J. Connell P.M. de Beer F.C. van der Westhuyzen D.R. Alternative forms of the scavenger receptor BI (SR-BI).J. Lipid Res. 1997; 38: 1490-1495Abstract Full Text PDF PubMed Google Scholar, 37.Krieger M. Charting the fate of the “good cholesterol”: identification and characterization of the high-density lipoprotein receptor SR-BI.Annu. Rev. Biochem. 1999; 68: 523-558Crossref PubMed Scopus (440) Google Scholar, 38.Rigotti A. Miettinen H.E. Krieger M. The role of the high-density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tissues.Endocr. Rev. 2003; 24: 357-387Crossref PubMed Google Scholar, 39.Connelly M.A. Williams D.L. Scavenger receptor BI: a scavenger receptor with a mission to transport high density lipoprotein lipids.Curr. Opin. Lipidol. 2004; 15: 287-295Crossref PubMed Scopus (126) Google Scholar, 40.Silverstein R.L. Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior.Sci. Signal. 2009; 2: re3Crossref PubMed Scopus (564) Google Scholar, 41.Gonzalez A. Valeiras M. Sidransky E. Tayebi N. Lysosomal integral membrane protein-2: a new player in lysosome-related pathology.Mol. Genet. Metab. 2014; 111: 84-91Crossref PubMed Scopus (40) Google Scholar). Full-length SR-B1 encodes a 509 amino acid protein, which, like other family members, contains a short N-terminal cytoplasmic domain of 9 amino acids (N-terminal domain), a transmembrane spanning domain of 22 amino acids, a large extracellular domain of 408 amino acids containing a cysteine-rich region and multiple sites for N-linked glycosylation, a second transmembrane domain of 23 amino acids, and a cytoplasmic C-terminal domain of 44 amino acids (37.Krieger M. Charting the fate of the “good cholesterol”: identification and characterization of the high-density lipoprotein receptor SR-BI.Annu. Rev. Biochem. 1999; 68: 523-558Crossref PubMed Scopus (440) Google Scholar, 42.Williams D.L. Connelly M.A. Temel R.E. Swarnakar S. Phillips M.C. de la Llera-Moya M. Rothblat G.H. Scavenger receptor BI and cholesterol trafficking.Curr. Opin. Lipidol. 1999; 10: 329-339Crossref PubMed Scopus (169) Google Scholar). SR-B1 is posttranslationally glycosylated, and mutational analysis showed the importance of Asn-108 and Asn-173 for plasma membrane localization of SR-B1 and for the ability to transfer lipid from HDL to cells (43.Viñals M. Xu S. Vasile E. Krieger M. Identification of the N-linked glycosylation sites on the high density lipoprotein (HDL) receptor SR-BI and assessment of their effects on HDL binding and selective lipid uptake.J. Biol. Chem. 2003; 278: 5325-5332Abstract Full Text Full Text PDF PubMed Scopus (53) Google Scholar). The mouse SR-B1 gene is located on chromosome 5 with 13 exons and 12 introns. Due to alternative splicing, the second isoform of SR-B1, SRB2 (SR-BII), has only 12 exons and a different C terminal with 41 amino acids (36.Webb N.R. de Villiers W.J. Connell P.M. de Beer F.C. van der Westhuyzen D.R. Alternative forms of the scavenger receptor BI (SR-BI).J. Lipid Res. 1997; 38: 1490-1495Abstract Full Text PDF PubMed Google Scholar). Using a specific antibody for SR-B2 isoform, SR-B2 protein was detected in mouse liver, testis, and adrenal glands at about 5–12% of immunodetectable SR-B1 (36.Webb N.R. de Villiers W.J. Connell P.M. de Beer F.C. van der Westhuyzen D.R. Alternative forms of the scavenger receptor BI (SR-BI).J. Lipid Res. 1997; 38: 1490-1495Abstract Full Text PDF PubMed Google Scholar, 44.Webb N.R. Connell P.M. Graf G.A. Smart E.J. de Villiers W.J. de Beer F.C. van der Westhuyzen D.R. SR-BII, an isoform of the scavenger receptor BI containing an alternate cytoplasmic tail, mediates lipid transfer between high density lipoprotein and cells.J. Biol. Chem. 1998; 273: 15241-15248Abstract Full Text Full Text PDF PubMed Scopus (185) Google Scholar). Recent genomic analysis revealed a third SR-B1 variant with another different alternative splicing that results in 11 exons and 520 amino acids; however, no functional significance of this variant has been reported yet. The mouse SR-B1 gene exon organization and the C termini of the three variants, as well as a cartoon of the structural features of SR-B1, are shown in Fig. 1. The predicted molecular mass of SR-B1 is ∼57 kDa, but, because the protein is heavily glycosylated (43.Viñals M. Xu S. Vasile E. Krieger M. Identification of the N-linked glycosylation sites on the high density lipoprotein (HDL) receptor SR-BI and assessment of their effects on HDL binding and selective lipid uptake.J. Biol. Chem. 2003; 278: 5325-5332Abstract Full Text Full Text PDF PubMed Scopus (53) Google Scholar), it runs ∼83–84 kDa on Western blot (37.Krieger M. Charting the fate of the “good cholesterol”: identification and characterization of the high-density lipoprotein receptor SR-BI.Annu. Rev. Biochem. 1999; 68: 523-558Crossref PubMed Scopus (440) Google Scholar, 42.Williams D.L. Connelly M.A. Temel R.E. Swarnakar S. Phillips M.C. de la Llera-Moya M. Rothblat G.H. Scavenger receptor BI and cholesterol trafficking.Curr. Opin. Lipidol. 1999; 10: 329-339Crossref PubMed Scopus (169) Google Scholar). SR-B1 is also myristoylated and palmitoylated, but fatty acid acylation of the protein does not affect its selective HDL-CE transport function (45.Babitt J. Trigatti B. Rigotti A. Smart E.J. Anderson R.G. Xu S. Krieger M. Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae.J. Biol. Chem. 1997; 272: 13242-13249Abstract Full Text Full Text PDF PubMed Scopus (324) Google Scholar). Scavenger receptors are cell surface membrane proteins that can bind chemically modified lipoproteins, including acetylated LDL (AcLDL), oxidized LDL (OxLDL), and often many other types of ligands (34.PrabhuDas M.R. Baldwin C.L. Bollyky P.L. Bowdish D.M.E. Drickamer K. Febbraio M. Herz J. Kobzik L. Krieger M. Loike J. et al.A consensus definitive classification of scavenger receptors and their roles in health and disease.J. Immunol. 2017; 198: 3775-3789Crossref PubMed Scopus (100) Google Scholar, 46.Zani I.A. Stephen S.L. Mughal N.A. Russell D. Homer-Vanniasinkam S. Wheatcroft S.B. Ponnambalam S. Scavenger receptor structure and function in health and disease.Cells. 2015; 4: 178-201Crossref PubMed Scopus (198) Google Scholar). SR-B1 was first identified in scavenger receptor expression cloning experiments using AcLDL as a ligand. Further studies have demonstrated that SR-B1 or its human homolog, CLA-1, bind an array of ligands (Table 1), including both native (VLDL, LDL, and HDL) (38.Rigotti A. Miettinen H.E. Krieger M. The role of the high-density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tissues.Endocr. Rev. 2003; 24: 357-387Crossref PubMed Google Scholar, 47.Calvo D. Gomez-Coronado D. Lasuncion M.A. Vega M.A. CLA-1 is an 85-kD plasma membrane glycoprotein that acts as a high-affinity receptor for both native (HDL, LDL, and VLDL) and modified (OxLDL and AcLDL) lipoproteins.Arterioscler. Thromb. Vasc. Biol. 1997; 17: 2341-2349Crossref PubMed Google Scholar) and modified lipoproteins (OxLDL and AcLDL) (27.Acton S.L. Scherer P.E. Lodish H.F. Krieger M. Expression cloning of SR-BI, a CD36-related class B scavenger receptor.J. Biol. Chem. 1994; 269: 21003-21009Abstract Full Text PDF PubMed Google Scholar, 47.Calvo D. Gomez-Coronado D. Lasuncion M.A. Vega M.A. CLA-1 is an 85-kD plasma membrane glycoprotein that acts as a high-affinity receptor for both native (HDL, LDL, and VLDL) and modified (OxLDL and AcLDL) lipoproteins.Arterioscler. Thromb. Vasc. Biol. 1997; 17: 2341-2349Crossref PubMed Google Scholar). SR-B1 can also bind maleylated BSA (38.Rigotti A. Miettinen H.E. Krieger M. The role of the high-density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tissues.Endocr. Rev. 2003; 24: 357-387Crossref PubMed Google Scholar); advanced glycation end-product modified proteins, such as advanced glycation end product BSA (48.Ohgami N. Nagai R. Miyazaki A. Ikemoto M. Arai H. Horiuchi S. Nakayama H. Scavenger receptor class B type I-mediated reverse cholesterol transport is inhibited by advanced glycation end products.J. Biol. Chem. 2001; 276: 13348-13355Abstract Full Text Full Text PDF PubMed Scopus (134) Google Scholar); hypochlorite-modified LDL (49.Marsche G. Hammer A. Oskolkova O. Kozarsky K.F. Sattler W. Malle E. Hypochlorite-modified high density lipoprotein, a high affinity ligand to scavenger receptor class B, type I, impairs high density lipoprotein-dependent selective lipid uptake and reverse cholesterol transport.J. Biol. Chem. 2002; 277: 32172-32179Abstract Full Text Full Text PDF PubMed Scopus (101) Google Scholar, 50.Marsche G. Zimmermann R. Horiuchi S. Tandon N.N. Sattler W. Malle E. Class B scavenger receptors CD36 and SR-BI are receptors for hypochlorite-modified low density lipoprotein.J. Biol. Chem. 2003; 278: 47562-47570Abstract Full Text Full Text PDF PubMed Scopus (56) Google Scholar); discoidal reconstituted phospholipid/unesterified cholesterol particles containing apoA-I, apoA-II, apoC-III, or apoE (51.Xu S. Laccotripe M. Huang X. Rigotti A. Zannis V.I. Krieger M. Apolipoproteins of HDL can directly mediate binding to the scavenger receptor SR-BI, an HDL receptor that mediates selective lipid uptake.J. Lipid Res. 1997; 38: 1289-1298Abstract Full Text PDF PubMed Google Scholar, 52.Li X. Kan H.Y. Lavrentiadou S. Krieger M. Zannis V. Reconstituted discoidal ApoE-phospholipid particles are ligands for the scavenger receptor BI. The amino-terminal 1-165 domain of ApoE suffices for receptor binding.J. Biol. Chem. 2002; 277: 21149-21157Abstract Full Text Full Text PDF PubMed Scopus (55) Google Scholar); reconstituted HDL particles containing apoA-I or apoA-II (53.de Beer M.C. Durbin D.M. Cai L. Mirocha N. Jonas A. Webb N.R. de Beer F.C. van Der Westhuyzen D.R. Apolipoprotein A-II modulates the binding and selective lipid uptake of reconstituted high density lipoprotein by scavenger receptor BI.J. Biol. Chem. 2001; 276: 15832-15839Abstract Full Text Full Text PDF PubMed Scopus (56) Google Scholar); and lipid-free apoE (53.de Beer M.C. Durbin D.M. Cai L. Mirocha N. Jonas A. Webb N.R. de Beer F.C. van Der Westhuyzen D.R. Apolipoprotein A-II modulates the binding and selective lipid uptake of reconstituted high density lipoprotein by scavenger receptor BI.J. Biol. Chem. 2001; 276: 15832-15839Abstract Full Text Full Text PDF PubMed Scopus (56) Google Scholar). However, SR-B1 exhibits much higher affinity for native HDL (26.Acton S. Rigotti A. Landschulz K.T. Xu S. Hobbs H.H. Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor.Science. 1996; 271: 518-520Crossref PubMed Google Scholar, 37.Krieger M. Charting the fate of the “good cholesterol”: identification and characterization of the high-density lipoprotein receptor SR-BI.Annu. Rev. Biochem. 1999; 68: 523-558Crossref PubMed Scopus (440) Google Scholar). The facts that HDL consists of particles of varying sizes and different lipid and protein compositions and densities (54.Phillips M.C. New insights into the determination of HDL structure by apolipoproteins: Thematic review series: high density lipoprotein structure, function, and metabolism.J. Lipid Res. 2013; 54: 2034-2048Abstract Full Text Full Text PDF PubMed Scopus (99) Google Scholar), and that apoA-I is the principal component of HDL, are in accordance with observations that the physical characteristics of HDL as well as the conformation/organization of apoA-I in HDL particles are critical for optimal binding of HDL to SR-B1 (38.Rigotti A. Miettinen H.E. Krieger M. The role of the high-density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tiss" @default.
- W2799987449 created "2018-05-17" @default.
- W2799987449 creator A5016579839 @default.
- W2799987449 creator A5028626936 @default.
- W2799987449 creator A5073287774 @default.
- W2799987449 creator A5077425218 @default.
- W2799987449 date "2018-01-01" @default.
- W2799987449 modified "2023-10-16" @default.
- W2799987449 title "Thematic Review Series: Lipid Transfer Proteins Scavenger receptor B type 1: expression, molecular regulation, and cholesterol transport function" @default.
- W2799987449 cites W1517227660 @default.
- W2799987449 cites W1518331340 @default.
- W2799987449 cites W1523684025 @default.
- W2799987449 cites W1526016286 @default.
- W2799987449 cites W1530870902 @default.
- W2799987449 cites W1560257150 @default.
- W2799987449 cites W1569200980 @default.
- W2799987449 cites W1574380753 @default.
- W2799987449 cites W1576930851 @default.
- W2799987449 cites W1588516858 @default.
- W2799987449 cites W1596816338 @default.
- W2799987449 cites W1764819423 @default.
- W2799987449 cites W1765820548 @default.
- W2799987449 cites W1795829905 @default.
- W2799987449 cites W1824441884 @default.
- W2799987449 cites W1830223329 @default.
- W2799987449 cites W1863056418 @default.
- W2799987449 cites W1870049952 @default.
- W2799987449 cites W1901163999 @default.
- W2799987449 cites W1963531905 @default.
- W2799987449 cites W1963827257 @default.
- W2799987449 cites W1965754770 @default.
- W2799987449 cites W1965983458 @default.
- W2799987449 cites W1966609176 @default.
- W2799987449 cites W1967583717 @default.
- W2799987449 cites W1967607543 @default.
- W2799987449 cites W1967630283 @default.
- W2799987449 cites W1968790628 @default.
- W2799987449 cites W1968883066 @default.
- W2799987449 cites W1968932054 @default.
- W2799987449 cites W1969302275 @default.
- W2799987449 cites W1971700135 @default.
- W2799987449 cites W1974711948 @default.
- W2799987449 cites W1974922585 @default.
- W2799987449 cites W1977085017 @default.
- W2799987449 cites W1978699219 @default.
- W2799987449 cites W1980064899 @default.
- W2799987449 cites W1980179678 @default.
- W2799987449 cites W1980781977 @default.
- W2799987449 cites W1982212379 @default.
- W2799987449 cites W1983038560 @default.
- W2799987449 cites W1984217012 @default.
- W2799987449 cites W1985170971 @default.
- W2799987449 cites W1986449617 @default.
- W2799987449 cites W1986963574 @default.
- W2799987449 cites W1987401504 @default.
- W2799987449 cites W1987525850 @default.
- W2799987449 cites W1988997346 @default.
- W2799987449 cites W1989539977 @default.
- W2799987449 cites W1989620438 @default.
- W2799987449 cites W1989711124 @default.
- W2799987449 cites W1991274568 @default.
- W2799987449 cites W1991879363 @default.
- W2799987449 cites W1994231923 @default.
- W2799987449 cites W1994369551 @default.
- W2799987449 cites W1994454511 @default.
- W2799987449 cites W1995392225 @default.
- W2799987449 cites W1995695714 @default.
- W2799987449 cites W1997678048 @default.
- W2799987449 cites W2000585388 @default.
- W2799987449 cites W2001688091 @default.
- W2799987449 cites W2001995220 @default.
- W2799987449 cites W2004083498 @default.
- W2799987449 cites W2004805723 @default.
- W2799987449 cites W2005252392 @default.
- W2799987449 cites W2008470057 @default.
- W2799987449 cites W2010081069 @default.
- W2799987449 cites W2010496276 @default.
- W2799987449 cites W2011984284 @default.
- W2799987449 cites W2014222524 @default.
- W2799987449 cites W2015119995 @default.
- W2799987449 cites W2016586181 @default.
- W2799987449 cites W2016597009 @default.
- W2799987449 cites W2017120858 @default.
- W2799987449 cites W2017905787 @default.
- W2799987449 cites W2018066700 @default.
- W2799987449 cites W2018557879 @default.
- W2799987449 cites W2018873324 @default.
- W2799987449 cites W2019119229 @default.
- W2799987449 cites W2021133118 @default.
- W2799987449 cites W2021267305 @default.
- W2799987449 cites W2021703905 @default.
- W2799987449 cites W2022376333 @default.
- W2799987449 cites W2022690810 @default.
- W2799987449 cites W2022788031 @default.
- W2799987449 cites W2023319900 @default.
- W2799987449 cites W2023426559 @default.
- W2799987449 cites W2024131238 @default.
- W2799987449 cites W2027323531 @default.