Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800043356> ?p ?o ?g. }
- W2800043356 endingPage "192" @default.
- W2800043356 startingPage "176" @default.
- W2800043356 abstract "Understanding precipitation on a regional basis is an important component of water resources planning and management. The present study outlines a methodology based on continuous wavelet transform (CWT) and multiscale entropy (CWME), combined with self-organizing map (SOM) and k-means clustering techniques, to measure and analyze the complexity of precipitation. Historical monthly precipitation data from 1960 to 2010 at 31 rain gauges across Iran were preprocessed by CWT. The multi-resolution CWT approach segregated the major features of the original precipitation series by unfolding the structure of the time series which was often ambiguous. The entropy concept was then applied to components obtained from CWT to measure dispersion, uncertainty, disorder, and diversification of subcomponents. Based on different validity indices, k-means clustering captured homogenous areas more accurately, and additional analysis was performed based on the outcome of this approach. The 31 rain gauges in this study were clustered into 6 groups, each one having a unique CWME pattern across different time scales. The results of clustering showed that hydrologic similarity (multiscale variation of precipitation) was not based on geographic contiguity. According to the pattern of entropy across the scales, each cluster was assigned an entropy signature that provided an estimation of the entropy pattern of precipitation data in each cluster. Based on the pattern of mean CWME for each cluster, a characteristic signature was assigned, which provided an estimation of the CWME of a cluster across scales of 1–2, 3–8, and 9–13 months relative to other stations. The validity of the homogeneous clusters demonstrated the usefulness of the proposed approach to regionalize precipitation. Further analysis based on wavelet coherence (WTC) was performed by selecting central rain gauges in each cluster and analyzing against temperature, wind, Multivariate ENSO index (MEI), and East Atlantic (EA) and North Atlantic Oscillation (NAO), indeces. The results revealed that all climatic features except NAO influenced precipitation in Iran during the 1960–2010 period." @default.
- W2800043356 created "2018-05-17" @default.
- W2800043356 creator A5015639176 @default.
- W2800043356 creator A5019721159 @default.
- W2800043356 creator A5033247515 @default.
- W2800043356 date "2018-08-01" @default.
- W2800043356 modified "2023-10-16" @default.
- W2800043356 title "Exploring the effects of climatic variables on monthly precipitation variation using a continuous wavelet-based multiscale entropy approach" @default.
- W2800043356 cites W1542727819 @default.
- W2800043356 cites W1586973386 @default.
- W2800043356 cites W1963975955 @default.
- W2800043356 cites W1976235891 @default.
- W2800043356 cites W1984413984 @default.
- W2800043356 cites W1985981412 @default.
- W2800043356 cites W1986934085 @default.
- W2800043356 cites W1987464326 @default.
- W2800043356 cites W1989773770 @default.
- W2800043356 cites W1990303980 @default.
- W2800043356 cites W1994279892 @default.
- W2800043356 cites W1994544962 @default.
- W2800043356 cites W2003602746 @default.
- W2800043356 cites W2010140249 @default.
- W2800043356 cites W2010433222 @default.
- W2800043356 cites W2023598254 @default.
- W2800043356 cites W2024226314 @default.
- W2800043356 cites W2030533970 @default.
- W2800043356 cites W2032558547 @default.
- W2800043356 cites W2032771154 @default.
- W2800043356 cites W2034139177 @default.
- W2800043356 cites W2035098349 @default.
- W2800043356 cites W2039183528 @default.
- W2800043356 cites W2040740406 @default.
- W2800043356 cites W2044753926 @default.
- W2800043356 cites W2045949158 @default.
- W2800043356 cites W2046116389 @default.
- W2800043356 cites W2052341655 @default.
- W2800043356 cites W2054356773 @default.
- W2800043356 cites W2058576097 @default.
- W2800043356 cites W2059644964 @default.
- W2800043356 cites W2061951880 @default.
- W2800043356 cites W2063615912 @default.
- W2800043356 cites W2068059354 @default.
- W2800043356 cites W2073633517 @default.
- W2800043356 cites W2087482499 @default.
- W2800043356 cites W2101621110 @default.
- W2800043356 cites W2106041586 @default.
- W2800043356 cites W2116413045 @default.
- W2800043356 cites W2125886503 @default.
- W2800043356 cites W2126260716 @default.
- W2800043356 cites W2147274725 @default.
- W2800043356 cites W2157192993 @default.
- W2800043356 cites W2162136094 @default.
- W2800043356 cites W2175321096 @default.
- W2800043356 cites W2176774719 @default.
- W2800043356 cites W2178077695 @default.
- W2800043356 cites W2333852215 @default.
- W2800043356 cites W2480288014 @default.
- W2800043356 cites W2543665400 @default.
- W2800043356 cites W2748069545 @default.
- W2800043356 cites W78307166 @default.
- W2800043356 doi "https://doi.org/10.1016/j.envres.2018.04.017" @default.
- W2800043356 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29709779" @default.
- W2800043356 hasPublicationYear "2018" @default.
- W2800043356 type Work @default.
- W2800043356 sameAs 2800043356 @default.
- W2800043356 citedByCount "40" @default.
- W2800043356 countsByYear W28000433562018 @default.
- W2800043356 countsByYear W28000433562019 @default.
- W2800043356 countsByYear W28000433562020 @default.
- W2800043356 countsByYear W28000433562021 @default.
- W2800043356 countsByYear W28000433562022 @default.
- W2800043356 countsByYear W28000433562023 @default.
- W2800043356 crossrefType "journal-article" @default.
- W2800043356 hasAuthorship W2800043356A5015639176 @default.
- W2800043356 hasAuthorship W2800043356A5019721159 @default.
- W2800043356 hasAuthorship W2800043356A5033247515 @default.
- W2800043356 hasConcept C105795698 @default.
- W2800043356 hasConcept C106301342 @default.
- W2800043356 hasConcept C121332964 @default.
- W2800043356 hasConcept C124101348 @default.
- W2800043356 hasConcept C151406439 @default.
- W2800043356 hasConcept C153180895 @default.
- W2800043356 hasConcept C154945302 @default.
- W2800043356 hasConcept C33923547 @default.
- W2800043356 hasConcept C39432304 @default.
- W2800043356 hasConcept C41008148 @default.
- W2800043356 hasConcept C47432892 @default.
- W2800043356 hasConcept C62520636 @default.
- W2800043356 hasConcept C66696666 @default.
- W2800043356 hasConcept C73555534 @default.
- W2800043356 hasConceptScore W2800043356C105795698 @default.
- W2800043356 hasConceptScore W2800043356C106301342 @default.
- W2800043356 hasConceptScore W2800043356C121332964 @default.
- W2800043356 hasConceptScore W2800043356C124101348 @default.
- W2800043356 hasConceptScore W2800043356C151406439 @default.
- W2800043356 hasConceptScore W2800043356C153180895 @default.
- W2800043356 hasConceptScore W2800043356C154945302 @default.
- W2800043356 hasConceptScore W2800043356C33923547 @default.