Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800135497> ?p ?o ?g. }
- W2800135497 endingPage "e0195093" @default.
- W2800135497 startingPage "e0195093" @default.
- W2800135497 abstract "The analysis of traffic collisions is essential for urban safety and the sustainable development of the urban environment. Reducing the road traffic injuries and the financial losses caused by collisions is the most important goal of traffic management. In addition, traffic collisions are a major cause of traffic congestion, which is a serious issue that affects everyone in the society. Therefore, traffic collision analysis is essential for all parties, including drivers, pedestrians, and traffic officers, to understand the road risks at a finer spatio-temporal scale. However, traffic collisions in the urban context are dynamic and complex. Thus, it is important to detect how the collision hotspots evolve over time through spatio-temporal clustering analysis. In addition, traffic collisions are not isolated events in space. The characteristics of the traffic collisions and their surrounding locations also present an influence of the clusters. This work tries to explore the spatio-temporal clustering patterns of traffic collisions by combining a set of network-constrained methods. These methods were tested using the traffic collision data in Jianghan District of Wuhan, China. The results demonstrated that these methods offer different perspectives of the spatio-temporal clustering patterns. The weighted network kernel density estimation provides an intuitive way to incorporate attribute information. The network cross K-function shows that there are varying clustering tendencies between traffic collisions and different types of POIs. The proposed network differential Local Moran's I and network local indicators of mobility association provide straightforward and quantitative measures of the hotspot changes. This case study shows that these methods could help researchers, practitioners, and policy-makers to better understand the spatio-temporal clustering patterns of traffic collisions." @default.
- W2800135497 created "2018-05-17" @default.
- W2800135497 creator A5000480706 @default.
- W2800135497 creator A5007798171 @default.
- W2800135497 creator A5035404367 @default.
- W2800135497 creator A5044357807 @default.
- W2800135497 creator A5051796390 @default.
- W2800135497 date "2018-04-19" @default.
- W2800135497 modified "2023-10-16" @default.
- W2800135497 title "Network-constrained spatio-temporal clustering analysis of traffic collisions in Jianghan District of Wuhan, China" @default.
- W2800135497 cites W1527366066 @default.
- W2800135497 cites W1532912978 @default.
- W2800135497 cites W1700547585 @default.
- W2800135497 cites W1731123982 @default.
- W2800135497 cites W1848391612 @default.
- W2800135497 cites W1877404719 @default.
- W2800135497 cites W1965126781 @default.
- W2800135497 cites W1965843983 @default.
- W2800135497 cites W1975938823 @default.
- W2800135497 cites W1978293581 @default.
- W2800135497 cites W1983496221 @default.
- W2800135497 cites W1989214067 @default.
- W2800135497 cites W1992344664 @default.
- W2800135497 cites W1996424678 @default.
- W2800135497 cites W20000430 @default.
- W2800135497 cites W2001423991 @default.
- W2800135497 cites W2004309119 @default.
- W2800135497 cites W2008911215 @default.
- W2800135497 cites W2010257382 @default.
- W2800135497 cites W2012223121 @default.
- W2800135497 cites W2017290774 @default.
- W2800135497 cites W2017755807 @default.
- W2800135497 cites W2021799679 @default.
- W2800135497 cites W2024497831 @default.
- W2800135497 cites W2027349022 @default.
- W2800135497 cites W2031412162 @default.
- W2800135497 cites W2032101051 @default.
- W2800135497 cites W2032514841 @default.
- W2800135497 cites W2033756769 @default.
- W2800135497 cites W2045423389 @default.
- W2800135497 cites W2046903883 @default.
- W2800135497 cites W2053105886 @default.
- W2800135497 cites W2053545688 @default.
- W2800135497 cites W2059502866 @default.
- W2800135497 cites W2062340241 @default.
- W2800135497 cites W2062750548 @default.
- W2800135497 cites W2065028181 @default.
- W2800135497 cites W2083719221 @default.
- W2800135497 cites W2086001041 @default.
- W2800135497 cites W2088545932 @default.
- W2800135497 cites W2088991272 @default.
- W2800135497 cites W2089490842 @default.
- W2800135497 cites W2104827669 @default.
- W2800135497 cites W2118898434 @default.
- W2800135497 cites W2119887708 @default.
- W2800135497 cites W2171533771 @default.
- W2800135497 cites W2258472557 @default.
- W2800135497 cites W2466526676 @default.
- W2800135497 cites W2516678414 @default.
- W2800135497 cites W2565426728 @default.
- W2800135497 cites W2588862637 @default.
- W2800135497 cites W2617137884 @default.
- W2800135497 doi "https://doi.org/10.1371/journal.pone.0195093" @default.
- W2800135497 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5909624" @default.
- W2800135497 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29672551" @default.
- W2800135497 hasPublicationYear "2018" @default.
- W2800135497 type Work @default.
- W2800135497 sameAs 2800135497 @default.
- W2800135497 citedByCount "23" @default.
- W2800135497 countsByYear W28001354972018 @default.
- W2800135497 countsByYear W28001354972019 @default.
- W2800135497 countsByYear W28001354972020 @default.
- W2800135497 countsByYear W28001354972021 @default.
- W2800135497 countsByYear W28001354972022 @default.
- W2800135497 countsByYear W28001354972023 @default.
- W2800135497 crossrefType "journal-article" @default.
- W2800135497 hasAuthorship W2800135497A5000480706 @default.
- W2800135497 hasAuthorship W2800135497A5007798171 @default.
- W2800135497 hasAuthorship W2800135497A5035404367 @default.
- W2800135497 hasAuthorship W2800135497A5044357807 @default.
- W2800135497 hasAuthorship W2800135497A5051796390 @default.
- W2800135497 hasBestOaLocation W28001354971 @default.
- W2800135497 hasConcept C105795698 @default.
- W2800135497 hasConcept C121704057 @default.
- W2800135497 hasConcept C124101348 @default.
- W2800135497 hasConcept C127413603 @default.
- W2800135497 hasConcept C154945302 @default.
- W2800135497 hasConcept C166957645 @default.
- W2800135497 hasConcept C176715033 @default.
- W2800135497 hasConcept C185429906 @default.
- W2800135497 hasConcept C205649164 @default.
- W2800135497 hasConcept C22212356 @default.
- W2800135497 hasConcept C2779343474 @default.
- W2800135497 hasConcept C2781317605 @default.
- W2800135497 hasConcept C31258907 @default.
- W2800135497 hasConcept C33923547 @default.
- W2800135497 hasConcept C38652104 @default.
- W2800135497 hasConcept C41008148 @default.