Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800139390> ?p ?o ?g. }
- W2800139390 endingPage "80" @default.
- W2800139390 startingPage "68" @default.
- W2800139390 abstract "Association rule mining (ARM) aims to find out association rules that satisfy predefined minimum support and confidence from a given database. However, in many cases ARM generates extremely large number of association rules, which are impossible for end users to comprehend or validate, thereby limiting the usefulness of data mining results. In this paper, we propose a new mining algorithm based on animal migration optimization (AMO), called ARM–AMO, to reduce the number of association rules. It is based on the idea that rules which are not of high support and unnecessary are deleted from the data. Firstly, Apriori algorithm is applied to generate frequent itemsets and association rules. Then, AMO is used to reduce the number of association rules with a new fitness function that incorporates frequent rules. It is observed from the experiments that, in comparison with the other relevant techniques, ARM–AMO greatly reduces the computational time for frequent item set generation, memory for association rule generation, and the number of rules generated." @default.
- W2800139390 created "2018-05-17" @default.
- W2800139390 creator A5001443974 @default.
- W2800139390 creator A5008082871 @default.
- W2800139390 creator A5028897862 @default.
- W2800139390 creator A5031703549 @default.
- W2800139390 creator A5035288030 @default.
- W2800139390 creator A5039629621 @default.
- W2800139390 creator A5072407810 @default.
- W2800139390 date "2018-08-01" @default.
- W2800139390 modified "2023-10-06" @default.
- W2800139390 title "ARM–AMO: An efficient association rule mining algorithm based on animal migration optimization" @default.
- W2800139390 cites W1520343032 @default.
- W2800139390 cites W1759128498 @default.
- W2800139390 cites W1956439169 @default.
- W2800139390 cites W1974788626 @default.
- W2800139390 cites W2005038754 @default.
- W2800139390 cites W2063736421 @default.
- W2800139390 cites W2064440670 @default.
- W2800139390 cites W2136078606 @default.
- W2800139390 cites W2188214996 @default.
- W2800139390 cites W2268805078 @default.
- W2800139390 cites W2288772698 @default.
- W2800139390 cites W2330823436 @default.
- W2800139390 cites W2429635987 @default.
- W2800139390 cites W2461236963 @default.
- W2800139390 cites W2464060855 @default.
- W2800139390 cites W2518370463 @default.
- W2800139390 cites W2518509308 @default.
- W2800139390 cites W2523619183 @default.
- W2800139390 cites W2540140736 @default.
- W2800139390 cites W2560303928 @default.
- W2800139390 cites W2564666952 @default.
- W2800139390 cites W2567650686 @default.
- W2800139390 cites W2580317810 @default.
- W2800139390 cites W2588221482 @default.
- W2800139390 cites W2593237442 @default.
- W2800139390 cites W2594256986 @default.
- W2800139390 cites W2597997664 @default.
- W2800139390 cites W2613683361 @default.
- W2800139390 cites W2734610200 @default.
- W2800139390 cites W1181448409 @default.
- W2800139390 doi "https://doi.org/10.1016/j.knosys.2018.04.038" @default.
- W2800139390 hasPublicationYear "2018" @default.
- W2800139390 type Work @default.
- W2800139390 sameAs 2800139390 @default.
- W2800139390 citedByCount "69" @default.
- W2800139390 countsByYear W28001393902018 @default.
- W2800139390 countsByYear W28001393902019 @default.
- W2800139390 countsByYear W28001393902020 @default.
- W2800139390 countsByYear W28001393902021 @default.
- W2800139390 countsByYear W28001393902022 @default.
- W2800139390 countsByYear W28001393902023 @default.
- W2800139390 crossrefType "journal-article" @default.
- W2800139390 hasAuthorship W2800139390A5001443974 @default.
- W2800139390 hasAuthorship W2800139390A5008082871 @default.
- W2800139390 hasAuthorship W2800139390A5028897862 @default.
- W2800139390 hasAuthorship W2800139390A5031703549 @default.
- W2800139390 hasAuthorship W2800139390A5035288030 @default.
- W2800139390 hasAuthorship W2800139390A5039629621 @default.
- W2800139390 hasAuthorship W2800139390A5072407810 @default.
- W2800139390 hasBestOaLocation W28001393902 @default.
- W2800139390 hasConcept C105445830 @default.
- W2800139390 hasConcept C111472728 @default.
- W2800139390 hasConcept C11413529 @default.
- W2800139390 hasConcept C119857082 @default.
- W2800139390 hasConcept C124101348 @default.
- W2800139390 hasConcept C127413603 @default.
- W2800139390 hasConcept C138885662 @default.
- W2800139390 hasConcept C14036430 @default.
- W2800139390 hasConcept C142853389 @default.
- W2800139390 hasConcept C154945302 @default.
- W2800139390 hasConcept C176066374 @default.
- W2800139390 hasConcept C177264268 @default.
- W2800139390 hasConcept C188198153 @default.
- W2800139390 hasConcept C193524817 @default.
- W2800139390 hasConcept C199360897 @default.
- W2800139390 hasConcept C41008148 @default.
- W2800139390 hasConcept C75553542 @default.
- W2800139390 hasConcept C78458016 @default.
- W2800139390 hasConcept C78519656 @default.
- W2800139390 hasConcept C81440476 @default.
- W2800139390 hasConcept C86803240 @default.
- W2800139390 hasConcept C8880873 @default.
- W2800139390 hasConceptScore W2800139390C105445830 @default.
- W2800139390 hasConceptScore W2800139390C111472728 @default.
- W2800139390 hasConceptScore W2800139390C11413529 @default.
- W2800139390 hasConceptScore W2800139390C119857082 @default.
- W2800139390 hasConceptScore W2800139390C124101348 @default.
- W2800139390 hasConceptScore W2800139390C127413603 @default.
- W2800139390 hasConceptScore W2800139390C138885662 @default.
- W2800139390 hasConceptScore W2800139390C14036430 @default.
- W2800139390 hasConceptScore W2800139390C142853389 @default.
- W2800139390 hasConceptScore W2800139390C154945302 @default.
- W2800139390 hasConceptScore W2800139390C176066374 @default.
- W2800139390 hasConceptScore W2800139390C177264268 @default.
- W2800139390 hasConceptScore W2800139390C188198153 @default.
- W2800139390 hasConceptScore W2800139390C193524817 @default.