Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800141806> ?p ?o ?g. }
- W2800141806 endingPage "3570" @default.
- W2800141806 startingPage "3565" @default.
- W2800141806 abstract "The ability to regulate intracellular gene expression with exogenous nucleic acids such as small interfering RNAs (siRNAs) has substantial potential to improve the study and treatment of disease. However, most transfection agents and nanoparticle-based carriers that are used for the intracellular delivery of nucleic acids cannot distinguish between diseased and healthy cells, which may cause them to yield unintended widespread gene regulation. An ideal delivery system would only silence targeted proteins in diseased tissue in response to an external stimulus. To enable spatiotemporal control over gene silencing, researchers have begun to develop nucleic acid-nanoparticle conjugates that keep their nucleic acid cargo inactive until it is released from the nanoparticle on-demand by externally applied near-infrared laser light. This strategy can overcome several limitations of other nucleic acid delivery systems, but the mechanisms by which these platforms operate remain ill understood. Here, we perform a detailed investigation of the mechanisms by which silica core/gold shell nanoshells (NSs) release conjugated siRNA upon excitation with either pulsed or continuous wave (CW) near-infrared (NIR) light, with the goal of providing insight into how these nanoconjugates can enable on-demand gene regulation. We demonstrate that siRNA release from NSs upon pulsed laser irradiation is a temperature-independent process that is substantially more efficient than siRNA release triggered by CW irradiation. Contrary to literature, which suggests that only pulsed irradiation releases siRNA duplexes, we found that both modes of irradiation release a mixture of siRNA duplexes and single-stranded oligonucleotides, but that pulsed irradiation results in a higher percentage of released duplexes. To demonstrate that the siRNA released from NSs upon pulsed irradiation remains functional, we evaluated the use of NSs coated with green fluorescent protein (GFP)-targeted siRNA (siGFP-NS) for on-demand knockdown of GFP in cells. We found that GFP-expressing cells treated with siGFP-NS and irradiated with a pulsed laser experienced a 33% decrease in GFP expression compared to cells treated with no laser. Further, we observed that light-triggered gene silencing mediated by siGFP-NS is more potent than using commercial transfection agents to deliver siRNA into cells. This work provides unprecedented insight into the mechanisms by which plasmonic NSs release siRNA upon light irradiation and demonstrates the importance of thoroughly characterizing photoresponsive nanosystems for applications in triggered gene regulation." @default.
- W2800141806 created "2018-05-17" @default.
- W2800141806 creator A5009466065 @default.
- W2800141806 creator A5019133023 @default.
- W2800141806 creator A5022062562 @default.
- W2800141806 creator A5042372768 @default.
- W2800141806 creator A5063192754 @default.
- W2800141806 creator A5079685304 @default.
- W2800141806 date "2018-04-27" @default.
- W2800141806 modified "2023-10-03" @default.
- W2800141806 title "Evaluating the Mechanisms of Light-Triggered siRNA Release from Nanoshells for Temporal Control Over Gene Regulation" @default.
- W2800141806 cites W1903778810 @default.
- W2800141806 cites W1989454102 @default.
- W2800141806 cites W1996139557 @default.
- W2800141806 cites W1998882765 @default.
- W2800141806 cites W2028845434 @default.
- W2800141806 cites W2058574114 @default.
- W2800141806 cites W2075440313 @default.
- W2800141806 cites W2076719191 @default.
- W2800141806 cites W2082455340 @default.
- W2800141806 cites W2091338613 @default.
- W2800141806 cites W2108524724 @default.
- W2800141806 cites W2112166581 @default.
- W2800141806 cites W2114435910 @default.
- W2800141806 cites W2133662071 @default.
- W2800141806 cites W2146888510 @default.
- W2800141806 cites W2151665064 @default.
- W2800141806 cites W2162463014 @default.
- W2800141806 cites W2170558349 @default.
- W2800141806 cites W2312941501 @default.
- W2800141806 cites W2323270466 @default.
- W2800141806 cites W2325163361 @default.
- W2800141806 cites W2550242222 @default.
- W2800141806 cites W2551812827 @default.
- W2800141806 cites W2586185458 @default.
- W2800141806 cites W2616918494 @default.
- W2800141806 cites W4211039187 @default.
- W2800141806 doi "https://doi.org/10.1021/acs.nanolett.8b00681" @default.
- W2800141806 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6450696" @default.
- W2800141806 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29701993" @default.
- W2800141806 hasPublicationYear "2018" @default.
- W2800141806 type Work @default.
- W2800141806 sameAs 2800141806 @default.
- W2800141806 citedByCount "45" @default.
- W2800141806 countsByYear W28001418062018 @default.
- W2800141806 countsByYear W28001418062019 @default.
- W2800141806 countsByYear W28001418062020 @default.
- W2800141806 countsByYear W28001418062021 @default.
- W2800141806 countsByYear W28001418062022 @default.
- W2800141806 countsByYear W28001418062023 @default.
- W2800141806 crossrefType "journal-article" @default.
- W2800141806 hasAuthorship W2800141806A5009466065 @default.
- W2800141806 hasAuthorship W2800141806A5019133023 @default.
- W2800141806 hasAuthorship W2800141806A5022062562 @default.
- W2800141806 hasAuthorship W2800141806A5042372768 @default.
- W2800141806 hasAuthorship W2800141806A5063192754 @default.
- W2800141806 hasAuthorship W2800141806A5079685304 @default.
- W2800141806 hasBestOaLocation W28001418062 @default.
- W2800141806 hasConcept C104317684 @default.
- W2800141806 hasConcept C119056186 @default.
- W2800141806 hasConcept C12554922 @default.
- W2800141806 hasConcept C129312508 @default.
- W2800141806 hasConcept C150194340 @default.
- W2800141806 hasConcept C155672457 @default.
- W2800141806 hasConcept C166703698 @default.
- W2800141806 hasConcept C171250308 @default.
- W2800141806 hasConcept C182606246 @default.
- W2800141806 hasConcept C185592680 @default.
- W2800141806 hasConcept C192562407 @default.
- W2800141806 hasConcept C22615655 @default.
- W2800141806 hasConcept C24107716 @default.
- W2800141806 hasConcept C33197981 @default.
- W2800141806 hasConcept C54009773 @default.
- W2800141806 hasConcept C552990157 @default.
- W2800141806 hasConcept C55493867 @default.
- W2800141806 hasConcept C67705224 @default.
- W2800141806 hasConcept C79879829 @default.
- W2800141806 hasConcept C86803240 @default.
- W2800141806 hasConcept C95444343 @default.
- W2800141806 hasConceptScore W2800141806C104317684 @default.
- W2800141806 hasConceptScore W2800141806C119056186 @default.
- W2800141806 hasConceptScore W2800141806C12554922 @default.
- W2800141806 hasConceptScore W2800141806C129312508 @default.
- W2800141806 hasConceptScore W2800141806C150194340 @default.
- W2800141806 hasConceptScore W2800141806C155672457 @default.
- W2800141806 hasConceptScore W2800141806C166703698 @default.
- W2800141806 hasConceptScore W2800141806C171250308 @default.
- W2800141806 hasConceptScore W2800141806C182606246 @default.
- W2800141806 hasConceptScore W2800141806C185592680 @default.
- W2800141806 hasConceptScore W2800141806C192562407 @default.
- W2800141806 hasConceptScore W2800141806C22615655 @default.
- W2800141806 hasConceptScore W2800141806C24107716 @default.
- W2800141806 hasConceptScore W2800141806C33197981 @default.
- W2800141806 hasConceptScore W2800141806C54009773 @default.
- W2800141806 hasConceptScore W2800141806C552990157 @default.
- W2800141806 hasConceptScore W2800141806C55493867 @default.
- W2800141806 hasConceptScore W2800141806C67705224 @default.
- W2800141806 hasConceptScore W2800141806C79879829 @default.