Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800156975> ?p ?o ?g. }
- W2800156975 endingPage "248" @default.
- W2800156975 startingPage "229" @default.
- W2800156975 abstract "Technical advances and decreasing costs of photovoltaic (PV) and battery (B) systems are key drivers for the consumer-prosumer transition in many countries. However, the installation of a photovoltaic-battery (PVB) system is not equally profitable for all consumers. This study systematically assesses how heterogeneity in real-world electricity load profiles affects the optimal system configuration and profitability of PVB systems. To that end, we develop a techno-economic simulation model that optimizes the PVB configuration for given electricity load profiles. The analysis uses real-world energy consumption data from 4190 households and is conducted for current electricity rates and weather conditions in Zurich, Switzerland. To account for future price reductions of PV and PVB systems, we conduct a sensitivity analysis that assesses how different cost scenarios influence optimal system configuration and profitability. Finally, we develop and validate a machine learning algorithm that can predict system profitability based only on a limited set of features and on shorter measurement timeframes of smart-meter data. We find that under the current cost scenario (PV: 2000 €/kWp, B: 1000 €/kWh) and without subsidies, about 40% of the analyzed households reach a positive net present value (NPV) for a PV-system, but only for 0.1% of households is the integration of a battery profitable. Under the most optimistic cost scenario for both technologies (PV: 1000 €/kWp, B: 250 €/kWh), 99.9% of the households benefit from the integration of battery storage into their optimal system configuration, with a mean installed PV power of 4.4 kWp and a mean battery size of 9.6 kWh. In all cost scenarios, system profitability varies considerably between households, even for households with comparable total annual demand, primarily due to the heterogeneity in the load profiles. Thus, being able to identify households for whom the installation is profitable is important. The proposed machine learning algorithm predicts optimal configuration, profitability, self-sufficiency, and self-sufficiency ratios with good accuracy, even when only relatively short timeframes of smart-meter data are available. The results of this study are relevant for households making individual investment decisions as well as for utility companies to more effectively identify and approach relevant customers for the installation of PVB systems. Furthermore, the findings enable policymakers to determine the critical levers for increasing private investments into PVB systems in their region and to predict how future developments like component costs will affect the future diffusion of these systems." @default.
- W2800156975 created "2018-05-17" @default.
- W2800156975 creator A5049274492 @default.
- W2800156975 creator A5052382186 @default.
- W2800156975 creator A5091400884 @default.
- W2800156975 date "2018-08-01" @default.
- W2800156975 modified "2023-10-08" @default.
- W2800156975 title "Economic assessment of photovoltaic battery systems based on household load profiles" @default.
- W2800156975 cites W1936773340 @default.
- W2800156975 cites W1969427387 @default.
- W2800156975 cites W1977066169 @default.
- W2800156975 cites W1989513893 @default.
- W2800156975 cites W2008426812 @default.
- W2800156975 cites W2021682622 @default.
- W2800156975 cites W2024157428 @default.
- W2800156975 cites W2033823475 @default.
- W2800156975 cites W2037399027 @default.
- W2800156975 cites W2048817830 @default.
- W2800156975 cites W2054634788 @default.
- W2800156975 cites W2058288797 @default.
- W2800156975 cites W2092950713 @default.
- W2800156975 cites W2094827317 @default.
- W2800156975 cites W2118147370 @default.
- W2800156975 cites W2157399030 @default.
- W2800156975 cites W2159229760 @default.
- W2800156975 cites W2208045813 @default.
- W2800156975 cites W2208201723 @default.
- W2800156975 cites W2225115145 @default.
- W2800156975 cites W2298463184 @default.
- W2800156975 cites W2338853577 @default.
- W2800156975 cites W2389558405 @default.
- W2800156975 cites W2461971468 @default.
- W2800156975 cites W2471764423 @default.
- W2800156975 cites W2487770199 @default.
- W2800156975 cites W2507382330 @default.
- W2800156975 cites W2508594961 @default.
- W2800156975 cites W2510832929 @default.
- W2800156975 cites W2521334108 @default.
- W2800156975 cites W2557701127 @default.
- W2800156975 cites W2557808522 @default.
- W2800156975 cites W2561035841 @default.
- W2800156975 cites W2567357032 @default.
- W2800156975 cites W2601729715 @default.
- W2800156975 cites W2605049944 @default.
- W2800156975 cites W2607046424 @default.
- W2800156975 cites W2608089436 @default.
- W2800156975 cites W2610954307 @default.
- W2800156975 cites W2776958968 @default.
- W2800156975 cites W2911964244 @default.
- W2800156975 cites W4234806469 @default.
- W2800156975 doi "https://doi.org/10.1016/j.apenergy.2018.03.185" @default.
- W2800156975 hasPublicationYear "2018" @default.
- W2800156975 type Work @default.
- W2800156975 sameAs 2800156975 @default.
- W2800156975 citedByCount "119" @default.
- W2800156975 countsByYear W28001569752018 @default.
- W2800156975 countsByYear W28001569752019 @default.
- W2800156975 countsByYear W28001569752020 @default.
- W2800156975 countsByYear W28001569752021 @default.
- W2800156975 countsByYear W28001569752022 @default.
- W2800156975 countsByYear W28001569752023 @default.
- W2800156975 crossrefType "journal-article" @default.
- W2800156975 hasAuthorship W2800156975A5049274492 @default.
- W2800156975 hasAuthorship W2800156975A5052382186 @default.
- W2800156975 hasAuthorship W2800156975A5091400884 @default.
- W2800156975 hasBestOaLocation W28001569751 @default.
- W2800156975 hasConcept C10138342 @default.
- W2800156975 hasConcept C111368507 @default.
- W2800156975 hasConcept C119599485 @default.
- W2800156975 hasConcept C121332964 @default.
- W2800156975 hasConcept C12725497 @default.
- W2800156975 hasConcept C127313418 @default.
- W2800156975 hasConcept C127413603 @default.
- W2800156975 hasConcept C129361004 @default.
- W2800156975 hasConcept C134560507 @default.
- W2800156975 hasConcept C144133560 @default.
- W2800156975 hasConcept C162324750 @default.
- W2800156975 hasConcept C163258240 @default.
- W2800156975 hasConcept C171146098 @default.
- W2800156975 hasConcept C175444787 @default.
- W2800156975 hasConcept C181230689 @default.
- W2800156975 hasConcept C206658404 @default.
- W2800156975 hasConcept C2777908891 @default.
- W2800156975 hasConcept C2778348673 @default.
- W2800156975 hasConcept C34447519 @default.
- W2800156975 hasConcept C39432304 @default.
- W2800156975 hasConcept C41008148 @default.
- W2800156975 hasConcept C41291067 @default.
- W2800156975 hasConcept C555008776 @default.
- W2800156975 hasConcept C62520636 @default.
- W2800156975 hasConcept C84265765 @default.
- W2800156975 hasConceptScore W2800156975C10138342 @default.
- W2800156975 hasConceptScore W2800156975C111368507 @default.
- W2800156975 hasConceptScore W2800156975C119599485 @default.
- W2800156975 hasConceptScore W2800156975C121332964 @default.
- W2800156975 hasConceptScore W2800156975C12725497 @default.
- W2800156975 hasConceptScore W2800156975C127313418 @default.
- W2800156975 hasConceptScore W2800156975C127413603 @default.