Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800160928> ?p ?o ?g. }
- W2800160928 endingPage "1022" @default.
- W2800160928 startingPage "1014" @default.
- W2800160928 abstract "One of the fundamental questions guiding research in the biological sciences is how cellular systems process complex physical and environmental cues and communicate with each other across multiple length scales. Importantly, aberrant signal processing in these systems can lead to diseases that can have devastating impacts on human lives. Biophysical studies in the past several decades have demonstrated that cells can respond to not only biochemical cues but also mechanical and electrical ones. Thus, the development of new materials that can both sense and modulate all of these pathways is necessary. Semiconducting nanostructures are an emerging class of discovery platforms and tools that can push the limits of our ability to modulate and sense biological behaviors for both fundamental research and clinical applications. These materials are of particular interest for interfacing with cellular systems due to their matched dimension with subcellular components (e.g., cytoskeletal filaments), and easily tunable properties in the electrical, optical and mechanical regimes. Rational design via traditional or new approaches, such as nanocasting and mesoscale chemical lithography, can allow us to control micro- and nanoscale features in nanowires to achieve new biointerfaces. Both processes endogenous to the target cell and properties of the material surface dictate the character of these interfaces. In this Account, we focus on (1) approaches for the rational design of semiconducting nanowires that exhibit unique structures for biointerfaces, (2) recent fundamental discoveries that yield robust biointerfaces at the subcellular level, (3) intracellular electrical and mechanical sensing, and (4) modulation of cellular behaviors through material topography and remote physical stimuli. In the first section, we discuss new approaches for the synthetic control of micro- and nanoscale features of these materials. In the second section, we focus on achieving biointerfaces with these rationally designed materials either intra- or extracellularly. We last delve into the use of these materials in sensing mechanical forces and electrical signals in various cellular systems as well as in instructing cellular behaviors. Future research in this area may shift the paradigm in fundamental biophysical research and biomedical applications through (1) the design and synthesis of new semiconductor-based materials and devices that interact specifically with targeted cells, (2) the clarification of many developmental, physiological, and anatomical aspects of cellular communications, (3) an understanding of how signaling between cells regulates synaptic development (e.g., information like this would offer new insight into how the nervous system works and provide new targets for the treatment of neurological diseases), (4) and the creation of new cellular materials that have the potential to open up completely new areas of application, such as in hybrid information processing systems." @default.
- W2800160928 created "2018-05-17" @default.
- W2800160928 creator A5010801142 @default.
- W2800160928 creator A5036016636 @default.
- W2800160928 date "2018-04-18" @default.
- W2800160928 modified "2023-10-18" @default.
- W2800160928 title "Rational Design of Semiconductor Nanostructures for Functional Subcellular Interfaces" @default.
- W2800160928 cites W1539437417 @default.
- W2800160928 cites W1550801008 @default.
- W2800160928 cites W1590155876 @default.
- W2800160928 cites W1894480128 @default.
- W2800160928 cites W1964868194 @default.
- W2800160928 cites W1970862469 @default.
- W2800160928 cites W1974231517 @default.
- W2800160928 cites W1976904757 @default.
- W2800160928 cites W1983828945 @default.
- W2800160928 cites W1985632398 @default.
- W2800160928 cites W2003274617 @default.
- W2800160928 cites W2005578936 @default.
- W2800160928 cites W2009165045 @default.
- W2800160928 cites W2009542643 @default.
- W2800160928 cites W2012368189 @default.
- W2800160928 cites W2020197664 @default.
- W2800160928 cites W2025352236 @default.
- W2800160928 cites W2029932526 @default.
- W2800160928 cites W2044815207 @default.
- W2800160928 cites W2049623973 @default.
- W2800160928 cites W2065328890 @default.
- W2800160928 cites W2074667326 @default.
- W2800160928 cites W2075089971 @default.
- W2800160928 cites W2085542786 @default.
- W2800160928 cites W2088784539 @default.
- W2800160928 cites W2103095259 @default.
- W2800160928 cites W2108558598 @default.
- W2800160928 cites W2108603877 @default.
- W2800160928 cites W2109158252 @default.
- W2800160928 cites W2116643706 @default.
- W2800160928 cites W2118703627 @default.
- W2800160928 cites W2130782603 @default.
- W2800160928 cites W2148830711 @default.
- W2800160928 cites W2156445293 @default.
- W2800160928 cites W2204347736 @default.
- W2800160928 cites W2236337102 @default.
- W2800160928 cites W2258434286 @default.
- W2800160928 cites W2264088247 @default.
- W2800160928 cites W2313190296 @default.
- W2800160928 cites W2414273319 @default.
- W2800160928 cites W2467954663 @default.
- W2800160928 cites W2473757742 @default.
- W2800160928 cites W2515934579 @default.
- W2800160928 cites W2528192529 @default.
- W2800160928 cites W2565547812 @default.
- W2800160928 cites W2596596521 @default.
- W2800160928 cites W2597851657 @default.
- W2800160928 cites W2607888449 @default.
- W2800160928 cites W2621590149 @default.
- W2800160928 cites W2724418801 @default.
- W2800160928 cites W2769688117 @default.
- W2800160928 cites W2775213689 @default.
- W2800160928 cites W2792632827 @default.
- W2800160928 cites W4211066815 @default.
- W2800160928 doi "https://doi.org/10.1021/acs.accounts.7b00555" @default.
- W2800160928 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5983887" @default.
- W2800160928 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29668260" @default.
- W2800160928 hasPublicationYear "2018" @default.
- W2800160928 type Work @default.
- W2800160928 sameAs 2800160928 @default.
- W2800160928 citedByCount "21" @default.
- W2800160928 countsByYear W28001609282018 @default.
- W2800160928 countsByYear W28001609282019 @default.
- W2800160928 countsByYear W28001609282020 @default.
- W2800160928 countsByYear W28001609282021 @default.
- W2800160928 countsByYear W28001609282022 @default.
- W2800160928 countsByYear W28001609282023 @default.
- W2800160928 crossrefType "journal-article" @default.
- W2800160928 hasAuthorship W2800160928A5010801142 @default.
- W2800160928 hasAuthorship W2800160928A5036016636 @default.
- W2800160928 hasBestOaLocation W28001609282 @default.
- W2800160928 hasConcept C171250308 @default.
- W2800160928 hasConcept C192562407 @default.
- W2800160928 hasConcept C41008148 @default.
- W2800160928 hasConcept C53105671 @default.
- W2800160928 hasConcept C74214498 @default.
- W2800160928 hasConceptScore W2800160928C171250308 @default.
- W2800160928 hasConceptScore W2800160928C192562407 @default.
- W2800160928 hasConceptScore W2800160928C41008148 @default.
- W2800160928 hasConceptScore W2800160928C53105671 @default.
- W2800160928 hasConceptScore W2800160928C74214498 @default.
- W2800160928 hasIssue "5" @default.
- W2800160928 hasLocation W28001609281 @default.
- W2800160928 hasLocation W28001609282 @default.
- W2800160928 hasLocation W28001609283 @default.
- W2800160928 hasLocation W28001609284 @default.
- W2800160928 hasOpenAccess W2800160928 @default.
- W2800160928 hasPrimaryLocation W28001609281 @default.
- W2800160928 hasRelatedWork W1994192847 @default.
- W2800160928 hasRelatedWork W1996409043 @default.
- W2800160928 hasRelatedWork W2055171879 @default.